Mass on Vertical Spring homework

AI Thread Summary
A spring with a constant of 40 N/m stretches 0.49 meters when a 2 kg mass is hung from it. In the second part of the problem, the mass is pulled down to stretch the spring by 0.98 meters and then pushed upward with an initial speed of 2 m/s. The total energy in the system must be equated to find the maximum velocity (vmax) when the block crosses the unstretched position. Discussions highlight the importance of accounting for gravitational work when calculating energy changes, leading to confusion over the correct application of energy conservation principles. Ultimately, the correct approach involves considering the total stretching from the unstretched position as 3δL.
r34racer01
Messages
62
Reaction score
0
showmepl-4.gif


A spring with spring constant k = 40 N/m and unstretched length of L0 is attached to the ceiling. A block of mass m = 2 kg is hung gently on the end of the spring.

a) How far does the spring stretch? dL = 0.49

Now the block is pulled down until the total amount the spring is stretched is twice the amount found in part (a). The block is then pushed upward with an initial speed vi = 2 m/s.
|v|max = ?


F=ma. W=Fd, W = ΔKE, U = mgh, Fs = -Kx


Part a was easy, weight equals spring force so mg = kx => x=mg/k = 0.49.
Part b is where I'm really stuck. Since (U + KE)final = (U + KE)initial then
mgh + 1/2mv^2 = mgh + 1/2mv^2 + Uspring => 2(9.81)(0.981) + 1/2(2)(2^2) = 40(0.981) + 1/2(2)(vmax^2) + 0 so vmax = 4.05 but that's not right. HELP PLEASE!
 
Physics news on Phys.org
In the second part, total energy in the system with respect to the unstretched position is
mg(2δL) + 1/2*k(2δL)^2 + 1/2mv^2
When it crosses the unstretshed position, it has only KE.
Equating the above two energies find the vmax.
 
rl.bhat said:
In the second part, total energy in the system with respect to the unstretched position is
mg(2δL) + 1/2*k(2δL)^2 + 1/2mv^2
When it crosses the unstretshed position, it has only KE.
Equating the above two energies find the vmax.

Ok so are you saying that: (mg(2δL) + 1/2*k(2δL)^2 + 1/2mv^2) = 1/2m(vmax)^2, cause when I solve that I get 6.51 which is wrong.
 
Take mg*2δL negative, because it is the work done against the gravity. It will reduce the KE.
 
rl.bhat said:
Take mg*2δL negative, because it is the work done against the gravity. It will reduce the KE.

Ok so then it should be -(mg(2δL) + 1/2*k(2δL)^2 + 1/2mv^2) = 1/2m(vmax)^2 =>
-2(9.81)(0.98) + .5(40)(.98^2) + .5(2)(2^2) = .5(2)(vmax^2) => vmax = 1.99 but that's wrong too.
 
Now the block is pulled down until the total amount the spring is stretched is twice the amount found in part (a)
So the total stretching from the unstretched position is 3δL.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top