Maximizing Rocket Efficiency: Utilizing Air for First Stage Fuel Oxidization

  • Thread starter Thread starter aaditya
  • Start date Start date
  • Tags Tags
    Rocket
AI Thread Summary
Using atmospheric air to oxidize fuel in the first stage of a rocket is impractical due to several significant challenges. Historical attempts by NASA and the DoD have shown that the limited oxygen content in air, which is only about 21%, cannot provide sufficient combustion efficiency or energy needed for effective propulsion. The sheer volume of air required to match the oxygen levels in liquid form is unfeasible, as it would necessitate impractically large rocket designs. Additionally, air-breathing engines face limitations in power-to-weight ratios and operational speed ranges, making them unsuitable for vertical launches. Current advancements, such as the SABRE engine, are exploring alternatives, but the concept of using atmospheric oxygen remains largely ineffective for rocket propulsion.
aaditya
Messages
1
Reaction score
0
i was wondering why not use the air in the surrounding to oxidise the fuel in the first stage of a rocket? it definitely will burn with the fuel(assuming bi propellant ) and will also reduce the wet mass of the rocket? is there any problem with this ?
 
Physics news on Phys.org
There are huge problems with that. DoD and NASA have spent lots of money, lots and lots and lots of money, on this concept, starting in the 1950s. It has never worked. Given the vast sums of money spent, I'd argue it cannot work. It's past time to put those monies elsewhere (and that's pretty much what has happened.)
 
there is not enough oxygen in the surrounding area to feed that much hydrogen it roughly has an expansion rate of 2000 times the size of itself in liquid form compared to itself in gaseous form, and you need a large amount of oxygen to fuel it and the only way to supplement it is in the liquid form , the equation goes 2h2+o2 yields 2h20 , so you need half the amount in oxygen then hydrogen to do it , the atmosphere can't feed it quick enough also , the energy released when 2 water molecules are formed (correct me if I am wrong) is about 400,000 joules of energy. and yes the energy is from combustion but to put it in more specific terms its from the electrons of the oxygen and hydrogen going to an outer energy level to a lower energy level and that's where the energy is released at
 
The first stage starts with a velocity of 0, so the initial oxygen supply would be really low. In addition, air has just 20% oxygen, which reduces the burning temperature and therefore the exhaust velocity significantly.

As an example, a Saturn V had 1 300 000 liters of liquid oxygen. The same amount of oxygen can be found in ~5 million cubic meters of air. The first stage burned 150 seconds and had a terminal velocity of ~2400 m/s. Approximating the acceleration as uniform, it traveled 180 km during this time. To get 5 million m^3 air, we would need an inlet of ~30m^2 or roughly the cross-section of the rocket. That is completely impractical (you cannot build a hollow rocket!), and ignores all the other issues mentioned.
Problematic aerodynamics would be another issue.

chacka said:
the energy released when 2 water molecules are formed (correct me if I am wrong) is about 400,000 joules of energy.
That is roughly 24 orders of magnitude off. Do you mean moles instead of molecules?
 
A rocket engine that burns atmospheric oxygen is just jet engine, and the problems with these, as I understand it, are that
1) they are not powerful enough compared to their weight to work as vertically lifting engines.
2) they cannot function through a wide enough speed range to make them practical in a rocket.

Point 1 is perhaps due to the reasons already discussed in this thread. One way to work around this would be to fire the engine horizontally and let wings do the lifting. However, that only further shifts the problem towards point 2.

There ARE continuous attempts at solving point 2 in an effort to make something of a space-plane a practical concept. The best contender as far as I know is the SABRE engine which is currently under development and making impressive progress.

In fact, I will do some light reading to catch up on latest developments right now!
 
Remember, air contains only about 21% oxygen, and for an air-breathing rocket to consume 1 cubic meter of oxygen, the engines must consume about 5 cubic meters of gaseous air.
 
Pilot training is critical to safe flying. I watched the following video regarding the crash of TAM 402 (31 October 1996), which crashed into a Sao Paolo neighorbood about 25 seconds after takeoff. https://en.wikipedia.org/wiki/TAM_Transportes_A%C3%A9reos_Regionais_Flight_402 The pilots were never trained to handle such an event (the airline had asked the manufacturer about training for this event), since it was considered too improbable (so rare) by the manufacturer. There was no...
Due to the constant never ending supply of "cool stuff" happening in Aerospace these days I'm creating this thread to consolidate posts every time something new comes along. Please feel free to add random information if its relevant. So to start things off here is the SpaceX Dragon launch coming up shortly, I'll be following up afterwards to see how it all goes. :smile: https://blogs.nasa.gov/spacex/
Back
Top