Calculating Moment of Inertia for an 80kg Plank on Two Workers' Shoulders

AI Thread Summary
The discussion revolves around calculating the moment of inertia for an 80kg plank held by two workers, with one worker letting go. Two methods were used to arrive at different moment of inertia values: Method 1 yielded 161 kgm², while Method 2 resulted in 230 kg/m². Method 1 is based on torque and angular acceleration, while Method 2 employs integration but assumes uniform mass distribution, which is not applicable here. The consensus is that without knowing the mass distribution of the plank, Method 2 cannot be reliably used. Accurate moment of inertia calculations require specific mass distribution information.
jono90one
Messages
28
Reaction score
0
I have a question but got two different answers by two different methods. The question:
"Two workers are holding an 80kg plank, one worker let's go. The weight is carried by 55% of the first worker. It is 2.5m long and no uniform. The angular acceleration is 5.5 rads/s^2, what is the moment of inertia of the plank about the axis perpendicular to the beam at the end held by the worker."

Method 1:
τ = F x r [1] (F=mg, r=2.5 x 0.45)
τ = Iα [2]
[1]=[2]
I = 161 kgm^2

Method 2:
I = ∑mx^2/l .δx between -0.45l and 0.55l
lim δx => 0
I = ∫mx^2/l .dx between -0.45l and 0.55l
I = 2060ml^2/8000
I = 128.75 kg/m^2
Using parallel axis theorem:
I = I1 +md^2
I = 128.75 + 80(0.45x2.5)^2
=230 kg/m^2

I do not know which method is the correct one, but unsure why the other would be wrong.

Can someone help me?

Thanks.
 
Physics news on Phys.org
Your first method looks good. Can you explain what you were doing in your second method?
 
Thanks for the responce, well from what i ahve been taught, i can work out the moment of inertia via integration. Though I am not 100% sure whether i can use the exact same method of the mass isn't uniform.

But the basis of the second method is work out the mass of a small piece = (m/l) δx

Then Moment of Inertia = ∑mr^2 = ∑((m/l)δx)x^2 with the appropriate limits of integration (that are in terms of l, hence l's cancle to give an l^2 term)

Then lim δx -> 0 that becomes dx and ∑ becomes ∫

Can this method not be used in this circumstance?
 
jono90one said:
Can this method not be used in this circumstance?
No, since it assumes a uniform distribution of mass.
 
Oh ok, just out of interest, is there a method with integration for this circumstance?
 
jono90one said:
Oh ok, just out of interest, is there a method with integration for this circumstance?
No, not that I can see. You'd need to know how the mass was distributed.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...

Similar threads

Back
Top