Motion in curves - Find radial and circumferential components of V and A

thaer_dude
Messages
19
Reaction score
0

Homework Statement



At time t, a comet has the position R = (t2-1)i + 2tj

At t = 2, find the radial and circumferential components of velocity and acceleration


Homework Equations


Vr = V * Ur
Vθ = V * Uθ

ar = a * Ur
aθ = a * Uθ

Ur = cosθ i + sinθ j
Uθ = -sinθ i + cosθ j

The Attempt at a Solution



I've found

v = 2ti + 2j
a= 2i

However, am I allowed to use these equations when the position vector is a function of t and not a function of θ? I'm not very good at polar coordinates so I'm really not sure if I can apply the above equations to my problem right away. Thanks
 
Physics news on Phys.org
so you've found the correct equations for v & a in caretseian coords, however now you must find their projection in the radial and theta directions
 
Yeah, but say I do Vr = V * Ur

I would get

Vr = (2t i + 2 j) * (cosθ i + sinθ j)
Vr = 2tcosθ i + 2sinθ j

Is that right? It strikes me as odd that the Vr I found has both θ and t in it.
 
thaer_dude said:
Yeah, but say I do Vr = V * Ur

I would get

Vr = (2t i + 2 j) * (cosθ i + sinθ j)
Vr = 2tcosθ i + 2sinθ j

Is that right? It strikes me as odd that the Vr I found has both θ and t in it.

if that is a dot product, then it should have a scalar result, not a vector
Vr = (2t i + 2 j) * (cosθ i + sinθ j) = 2tcosθ + 2sinθ

And it should be a simple exercise to write theta in terms of t
 
Last edited:
thaer_dude said:
Yeah, but say I do Vr = V * Ur

I would get

Vr = (2t i + 2 j) * (cosθ i + sinθ j)
Vr = 2tcosθ i + 2sinθ j

Is that right? It strikes me as odd that the Vr I found has both θ and t in it.
What sort of multiplication gives: (2t i + 2 j) * (cosθ i + sinθ j) = 2t*cosθ i + 2sinθ j ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top