Mutual Inductance of a conducting loop and a solenoid

AI Thread Summary
The discussion focuses on calculating the mutual inductance between a solenoid and a conducting loop. A solenoid with specific dimensions and a changing current rate is analyzed, with participants attempting to derive the induced emf and magnetic flux. The key equations involve the magnetic field strength inside the solenoid and the relationship between emf and the rate of change of current. Participants clarify that the rate of change of current can be directly used to find the change in magnetic flux, simplifying the calculation of mutual inductance. Ultimately, the correct mutual inductance value is confirmed, emphasizing the importance of understanding the underlying principles rather than relying on arbitrary values.
kiltfish
Messages
6
Reaction score
0

Homework Statement



A 0.100m long solenoid has a radius of 0.05m and 15000 turns. The current in the solenoid changes at a rate of 6.0 A/s. A conducting loop of radius 0.0200m is placed at the center of the solenoid with its axis the same as that of the solenoid. Determine the mutual inductance of this combination.

Homework Equations



Es=-M(\DeltaIp/\Deltat)

The Attempt at a Solution



The answer has to be the induced emf divided by the rate of current change(6 A/s), but I just don't understand where and how we can glean the emf from the information given. I'm having a hard time on this emf stuff. I thought I understood very well how and when it is induced, but this is the second instance that I've had to solve for two variables and I just don't know how my teacher expects us to do it.
 
Physics news on Phys.org
The emf induced in a loop due to changing flux inside the loop is

\left| E \right| = \left| \frac{d \Phi}{dt} \right|

The flux in side the loop depends upon the magnetic field strength inside the loop and the area of the loop.

So, I suggest you start with the equation for the field strength inside the solenoid. Differentiate to find rate of change.
 
Ok, I see that I need the change in magnetic flux to calculate the Emf of the inner conducting loop, but I still can't calculate that without a single hint about magnetic field strength. I thought I could figure out the change in field strength by doing two calculations of
B=uo(N/L)I.
I made I=6 in one equation and I=12 in another, to assume a one second time variable in every other equation to come. So I got Bo=1.131T and B=2.262T. I multiplies each with the cross sectional area of the primary solenoid (\pi.052) and I took the difference to get .00888 for the change in magnetic flux over 1 second inside the solenoid. From there, I thought I could set that number equal to the negative mutual inductance times the rate of current change. But that would mean that .00888/-6 would equal my answer, and I know the answer isn't -0.00148 H. I'm expecting a positive number to the 10-4 power
 
You have

B=uo(N/L)I

and the flux in an area A is just

Φ = B*A

So what's dΦ/dt for the area of the loop? (Hint: the only variable that changes in B is I).
 
ok, ok. so I didn't need to do two magnetic field strength equations? If I let I=6, I get B=1.131. The flux inside the conducting loop then is 0.00142, and Es would be -.00142 for one second. Then I can finally solve for M to get 2.369*10-4. I hope I've done it right this time. It makes a little more sense now. I don't know why I thought the magnetic field strength would change throughout the system
 
kiltfish said:
ok, ok. so I didn't need to do two magnetic field strength equations? If I let I=6, I get B=1.131. The flux inside the conducting loop then is 0.00142, and Es would be -.00142 for one second. Then I can finally solve for M to get 2.369*10-4. I hope I've done it right this time. It makes a little more sense now. I don't know why I thought the magnetic field strength would change throughout the system

You got to a correct answer, but you should be able to get there without plugging in arbitrary values for the current and assuming a particular time interval (sort of a "poor man's derivative").

I think that the intention of the problem writer was to get you to recognize that the given rate of change of current is in fact dI/dt, which you could use directly to find dΦ/dt for the loop, hence the induced emf, E. Then E/(dI/dt) yields the mutual inductance.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top