Nanoscale electronics and impulse force

AI Thread Summary
In nanoscale electronics, electrons behave similarly to billiard balls, particularly in devices like ballistic electron transistors. The discussion centers on calculating the time required for a vertical force of 8.90·10^-13 N to achieve a deflection angle of 136° after an elastic collision with a wall at 45°. The problem involves breaking down velocity vectors to determine changes in momentum and applying the impulse formula. There is confusion regarding whether the force from the electrodes should be considered an impulse force or an average force. Clarification on this point is sought to solve the problem effectively.
xdctassonx
Messages
6
Reaction score
0
In nanoscale electronics, electrons can be treated like billiard balls. The figure shows a simple device currently under study in which an electron elastically collides with a rigid wall (a ballistic electron transistor). The green bars represent electrodes that can apply a vertical force of 8.90·10-13 N to the electrons. If an electron initially has velocity components vx = 1.30·105 m/s and vy = 0 and the wall is at 45.0°, the deflection angle θD is 90.0°. How long does the vertical force from the electrodes need to be applied to obtain a deflection angle of 136.°?



v=√(vx^2+vy^2)

Δp=J(impulse force)=F(average)*Δt

We had a similar problem in class where a baseball was pitched over home plate at 5 below the horizontal with a velocity of 40.23m/s and than hit back at 35° above the horizontal with a velocity of 49.17 m/s. the baseball weighed 0.145 kg and the bat made contact for1.2 ms. We solved this one by
Δvx=(49.17 m/s)(cos35°)-(40.23 m/s)(cos185°)=80.35 m/s
Δvy=(49.17 m/s)(sin 35°)-(40.23 m/s)(sin185°)=31.71 m/s
√((80.35 m/s)^2+(31.71 m/s)^2)=86.38 m/s
Δp=mΔv=(0.145 kg)(86.38 m/s)=12.5 kg m/s
and the we used impulse formula to solve for average force:
F(average)=Δp/Δt=(12.5 kg m/s)/0.0012s=10.4 kN

I understand that we had to break up the velocity vectors in order to solve for the change in velocity vectors, because that change will give us change in momentum. However I am really hung up on this problem when it hits a 45° wall. Would the the force applied by the electrodes be the impulse force or average force? If anyone could help me through this that would be great! Thanks!
 
Physics news on Phys.org
Here is a picture as well.
 

Attachments

  • P036figure.png
    P036figure.png
    10.4 KB · Views: 357
Does anyone have any idea?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...

Similar threads

Back
Top