You're right that the current going into the op-amp input is zero. But there are a couple of things wrong with your equation. In the third term you shouldn't have voltage in the denominator when all the other terms are divided by an impedance. The first term is written as a current flowing out of the node, so if the other terms are on the other side of the equals sign they must represent currents flowing into the node. That's not what the order of the voltages in the terms suggest.
To avoid errors by making the process automatic, a good approach is to always write a node equation as a sum of terms that sum to zero. That is, place all the terms on one side of the equals sign and a zero on the other. Choose one direction for the assumed current direction for all the terms, either all into the node or all out of the node, then write all the terms with that one assumption. The math will then take care of the details and you don't have to try to figure out ahead of time what the "real" current directions are.