Newton's laws of motion -- Force of gravity on a skydiver

AI Thread Summary
The discussion centers on calculating the force of gravity acting on a skydiver, using the formula force = mass x acceleration. A mass of 75 kg and an acceleration due to gravity of 9.8 m/s² results in a force of 735 N. Participants clarify that the force of gravity remains constant regardless of whether the skydiver is in free fall or after landing, as it only changes with a change in mass. The conversation emphasizes understanding the principles behind Newton's laws of motion. Overall, the calculations and concepts discussed reinforce the consistency of gravitational force in this context.
kara123
Messages
21
Reaction score
4
Homework Statement
A 75 kg skydiver jumps out of an airplane. Calculate the force of gravity acting on him when he jumps and after he has landed. Explain any differences
Relevant Equations
Fnet=ma
I think you would do force of gravity= mass x acceleration

acceleration of gravity= 9.8 m/s
mass 75 kg
75kg x 9.8 m/s
=735 N

i don't know if that's right but i have no idea how to calculate it after he lands, any help would be greatly appreciated!
 
Physics news on Phys.org
kara123 said:
i don't know if that's right but i have no idea how to calculate it after he lands
Looks good to me. Question for you: Does the force of gravity change when he lands?
 
kara123 said:
... i have no idea how to calculate it after he lands, any help would be greatly appreciated!
It's a trick question. Knowing that, take a shot at it.
 
Doc Al said:
Looks good to me. Question for you: Does the force of gravity change when he lands?
it does not so it would remain the same after he lands then. The force of gravity would only change in this situation if the mass changes?
 
kara123 said:
it does not so it would remain the same after he lands then. The force of gravity would only change in this situation if the mass changes?
Right! As @russ_watters said, it's kind of a trick question.
 
  • Like
Likes russ_watters
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top