VinnyCee
- 486
- 0
Homework Statement
Define a dimensionless radial coordinate as
x\,=\,r\,\sqrt{\frac{2\,h}{b\,k}}
and introduce y\,=\,T\,-\,T_a, and thus show the elementary equation
x^2\,\frac{d^2y}{dx}\,+\,x\,\frac{dy}{dx}\,-\,x^2\,y\,=\,0
describes the physical situation.
It gives the "physical situation" equation in the previous problem:
\frac{1}{r}\,\frac{d}{dr}\,\left(r\,\frac{dT}{dr}\right)\,-\,\left(\frac{2\,h}{b\,k}\right)\,\left(T\,-\,T_a\right)\,=\,0
Homework Equations
http://en.wikipedia.org/wiki/Nondimensionalization"
The Attempt at a Solution
Re-expressing the constants
z\,=\,\frac{2\,h}{b\,k}
solving the dimensionless radial coordinate for r
r\,=\,\frac{x}{\sqrt{z}}
Now, I substitute these along with y\,=\,T\,-\,T_a[/tex] into the "physical situation" equation that I am supposed to non-dimensionalize<br /> <br /> \frac{\sqrt{z}}{x}\,\frac{d}{d\left(\frac{x}{\sqrt{z}}\right)}\,\left[\left(\frac{x}{\sqrt{z}}\right)\,\frac{dT}{d\left(\frac{x}{\sqrt{z}}\right)}\right]\,-\,z\,y\,=\,0<br /> <br /> What do I do about the denominator in the second and fourth fractions?<br /> <br /> \frac{d}{d\left(\frac{x}{\sqrt{z}}\right)}
Last edited by a moderator: