What is the Force Acting on a Particle with Changing Velocity?

AI Thread Summary
The discussion centers on calculating the force acting on a 0.2 kg particle with a time-varying velocity in the x-y plane. Participants debate whether to directly substitute 't=2' into the velocity equation or to integrate force over time, noting that force depends on time and cannot simply be treated as a constant. The correct approach involves differentiating the velocity equation to find acceleration, which is then used to calculate the net force. After determining the net force, users suggest substituting the mass to find the specific force at the given time. The conversation emphasizes understanding the relationship between force, mass, and acceleration in dynamic systems.
Doonami
Messages
5
Reaction score
0

Homework Statement


A 0.2 kg particle moves in the x-y plane under the action of its weight and a force F that varies with time. The velocity of the particle is given by the expression

\hat{v} = 7.5(t2 + 3)\hat{i} - (10/3)(t3 - 4)\hat{j}


Homework Equations


mv1 + \sum\intFdt = mv2


The Attempt at a Solution


Am I crazy? Or Can I just plug in 't=2' into the given equation? I'm sceptical, because it seems too good to be true. It is asking for F at t = 2 and the effect of gravity seems to be accounted for in the vector equation.
 
Physics news on Phys.org
hmmm good question
i haven't seen this type of question before but if your using the equation you have stated it looks like there should be some limits to deal with the integral.
On second thought, if you integrate F dt, you would end up with Ft which happens to be impulse so to be honest it looks a little confusing.
Maybe plug in your value for t into the velocity equation and then your value for t into the equation you have with the integral and rearrange to find F?
good luck!
 
RoryP said:
hmmm good question
if you integrate F dt, you would end up with Ft which happens to be impulse so to be honest
You cannot say that because F depends on the variable t !

So integration of Fdt doesn't give you Ft. this would only be the case if F were independent of t.

Now, the OP's question is to calculate F at t=2 no ?

What's the connection between F and v if you know that F=ma (a : acceleration)

marlon
 
ahhh nuts this is true!
sorry to be no help!
 
a = dv/dt

So, from that I should differentiate the equation for v with respect to time. I can just do this for the individual components (i and j) right? This should yield . . .

ma = 0.2[ (15t)i - (10t2)j ]

multiplied by mass, then sub in t=2.
 
Doonami said:
a = dv/dt

So, from that I should differentiate the equation for v with respect to time. I can just do this for the individual components (i and j) right? This should yield . . .

ma = 0.2[ (15t)i - (10t2)j ]

multiplied by mass, then sub in t=2.
Good. This tells you the net force, now find F.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top