1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Particles and charge

  1. Mar 29, 2008 #1

    ~christina~

    User Avatar
    Gold Member

    1. The problem statement, all variables and given/known data
    Modern homes that have been tightly sealed for fuel efficiency can have a build up of radon gas inside. This gas diffuses out of the ground and through the foundations of these homes, forming an air pollutant. Radon can decay by emitting an alpha particle (charge ) [tex]Q1= 3.2x10^{-19} C [/tex] In addition to the alpha particle, this transmutation also produces a polonium nucleus (charge[tex] Q_2= 1.3 x10^{-17} C [/tex])

    a) find the force exerted on the alpha particle by the polonium nucleus if they are a distance of [tex]d_1= 9.1 x10^{-15}m[/tex] apart. compare your results to the gravitational force that the polonium nucleus exerts on the alpha particle( the masses of the alpha particle and the polonium nucleus are [tex]6.60 x10^ {-27}kg[/tex] and [tex]3.45x10^{-25} kg [/tex] respectively)

    b) assume that the polonium is fixed and the alpha particle is free to move. How many MeV's of work is done on the alpha particke as it moves to anew position [tex]d_2= 2di[/tex]

    c) If the alpha particle is initially at rest, find it's speed at it's new position

    2. Relevant equations
    3. The attempt at a solution

    a) find the force exerted on the alpha particle by the polonium nucleus if they are a distance of [tex]d_1= 9.1 x10^{-15}m[/tex] apart. compare your results to the gravitational force that the polonium nucleus exerts on the alpha particle( the masses of the alpha particle and the polonium nucleus are [tex]6.60 x10^ {-27}kg[/tex] and [tex]3.45x10^{-25} kg [/tex] respectively)

    well since I have

    [tex]d_1= 9.1 x10^{-15}m[/tex]

    [tex]M_\alpha = 6.60 x10^ {-27}kg[/tex]

    [tex]M_p= 3.45x10^{-25} kg [/tex]

    I think to find the force exerted on the alpha particle (not sure if this is correct but I couldn't think of anything else)

    [tex]F_e= k_e \frac{|q_1||q_2|} {r^2} [/tex]

    so is the force just F? I would think so..

    so it would be

    [tex]F_e= k_e \frac{|q_1||q_2|} {r^2} [/tex]

    [tex]k_e= 8.9876x10^9 N*m^2/C^2[/tex]
    [tex]Q1= 3.2x10^{-19} C [/tex]
    [tex] Q_2= 1.3 x10^{-17} C [/tex]

    [tex]F_e= (8.9876x10^9 N*m^2/C^2) \frac{|3.2x10^{-19} C ||1.3 x10^{-17} C |} {9.1 x10^{-15}m^2} =[/tex]
     
  2. jcsd
  3. Mar 29, 2008 #2

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes, that will be the electric force except that the entire denominator must be squared (the way you wrote it it looks like you only squared the units) so it should be


    [tex]F_e= (8.9876x10^9 N*m^2/C^2) \frac{|3.2x10^{-19} C ||1.3 x10^{-17} C |} {(9.1 x10^{-15}m)^2} =[/tex][/QUOTE]
     
  4. Mar 29, 2008 #3

    ~christina~

    User Avatar
    Gold Member

    That is what I meant to say. (I had problems submitting things onto the forum before so it wasn't even showing as a fraction and I couldn't edit either) so it would equal

    [tex]F_e= (8.9876x10^9 N*m^2/C^2) \frac{|3.2x10^{-19} C ||1.3 x10^{-17} C |} {(9.1 x10^{-15}m)^2} = 3.44 x10^-64N[/tex]

    and when they say to compare it to the gravitational force would they mean to use this:
    [tex]F= G\frac{M_1M_2} {r^2} [/tex] thus:

    [tex]F= 6.67x10^{-11}N(m/kg)^2 \frac{ (6.60 x10^ {-27}kg)
    (3.25x10^{-25}kg)} {9.1x10^{-15}}= 1.57x10^{-47} N[/tex]

    b) assume that the polonium is fixed and the alpha particle is free to move. How many MeV's of work is done on the alpha particle as it moves to a new position [tex]d_2= 2di[/tex]


    how would I do this? and what is "MeV's work"
     
    Last edited: Mar 29, 2008
  5. Mar 29, 2008 #4

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Ok. Looks good then
    Yes. You put the exponent of 2 in the deominator at the wrong place in your tex code but I can see that you mean the correct expression which is
     
  6. Mar 29, 2008 #5

    ~christina~

    User Avatar
    Gold Member

    yes, I did mean that, but since I copied and pasted here and there I missed that.

    [tex]F= 6.67x10^{-11}N(m/kg)^2 \frac{(6.60 x10^ {-27}kg)
    (3.25x10^{-25}kg)} {(9.1x10^{-15})^2} = 1.727x10^-33 N[/tex]


    hm so you mean I take this number below and subtract it from the distance if it was 2d? like this?

    [tex]U= (8.9876x10^9 N*m^2/C^2) \frac{|3.2x10^{-19} C ||1.3 x10^{-17} C |} {(9.1 x10^{-15}m)} = 4.1086x10^{-12} [/tex]

    [tex]U= (8.9876x10^9 N*m^2/C^2) \frac{|3.2x10^{-19} C ||1.3 x10^{-17} C |} {(2(9.1 x10^{-15}m))} =2.054x10^{-12} [/tex]
     
    Last edited: Mar 29, 2008
  7. Mar 29, 2008 #6

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Yes (but don't put absolute values...there are no absolute values taken when we calculate potential energy. here it does not make any difference but just to let you know).

    And notice that the units are Joules. You will have to convert to MeV (recalling that [tex] 1 eV = 1.60 \times 10^{-19} J [/tex])
     
  8. Mar 29, 2008 #7

    ~christina~

    User Avatar
    Gold Member

    I just noticed that this looked funny so I did it over:

    [tex]F= 6.67x10^{-11}N(m/kg)^2 \frac{(6.60 x10^ {-27}kg)(3.25x10^{-25}kg)} {(9.1x10^{-15})^2} = 1.727x10^-33 N[/tex]

    Oh..okay. when I convert it it would be

    [tex]Fe_i= 4.1086 x 10^{-12}= 2.5678x10^7 eV [/tex]

    [tex]Fe_f= 2.054 x 10^{-12}= 1.2837x10^7 eV [/tex]

    and subtracting would give me..

    [tex]2.5678x10^7 eV - 1.2837x10^7 eV = 1.284125x10^7 eV[/tex]


    c) If the alpha particle is initially at rest, find it's speed at it's new position

    not sure how to do this either unfortunately.

    Thanks
     
  9. Mar 29, 2008 #8

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    Don't forget to convert to MeV (1 MeV = 10^6 eV)
    Conservation of energy

    initial Kinetic energy + initial potential energy = final Kinetic energy plus final potential energy

    where potential energy here is again [tex] k q_1 q_2 /r [/tex]
     
  10. Mar 29, 2008 #9

    ~christina~

    User Avatar
    Gold Member

    oh, haha I was wondering what the M was. okay.

    hm..so the potential energy doesn't include the masses of the particles, just charges?

    [tex]1/2mv^2 + k \frac{q_1q_2} {r} = 1/2mv^2 + k \frac{q_1q_2} {r} [/tex]

    I'm not sure what the equation for the kinetic energy for a particle would be.

    Is it like I wrote it, or does it include the 2 masses OR is it some other equation like the potential energy?

    Thanks
     
  11. Mar 29, 2008 #10

    nrqed

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    What you wrote is correct (and yes, the kinetic energy is simply 1/2 mv^2) To be more precise, the equation is



    [tex]1/2mv_i^2 + k \frac{q_1q_2} {r_i} = 1/2mv_f^2 + k \frac{q_1q_2} {r_f} [/tex]

    where "i" stands for initial and "f" for final.

    here I used the fact that only one of the two masses moves (this is why they say to assume that the Po nucleus is staying at rest). So the mass that appears there is the mass of the alpha particle
     
  12. Mar 29, 2008 #11

    ~christina~

    User Avatar
    Gold Member

    Oh..okay but you would still include the charges of the two particles, right? Is it because their presence affects the other particle?

    [tex]1/2mv_i^2 + k \frac{q_1q_2} {r_i} = 1/2mv_f^2 + k \frac{q_1q_2} {r_f} [/tex]

    so since initial v is 0 and plugging in the numbers I got before. Assuming initial is d1 given and the d2 is 2d1

    [tex]0 + 4.1086x10^{-12}J = 1/2 (6.60 x10^ {-27}kg) (v_f)^2 + 2.054x10^{-12}J [/tex]

    [tex]v_f= 4.99x10^3 m/s[/tex] => is it supposed to be that large?
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?



Similar Discussions: Particles and charge
  1. Charged Particles (Replies: 7)

  2. Charged particles (Replies: 3)

  3. Charged particles (Replies: 2)

  4. Charged Particles (Replies: 2)

Loading...