Partition Function of N Particles: Is Z=(Z_1)^N?

Pacopag
Messages
193
Reaction score
4

Homework Statement


If we have a system of N independent particles and the partition function for one particle is Z_1, then is the partition function for the N particle system Z=(Z_1)^N?


Homework Equations





The Attempt at a Solution


I'm pretty sure that this is true for a classical system, but I'm not sure if it's true for a quantum system. Does the Pauli exclusion principle spoil this somehow?
 
Physics news on Phys.org
Even without quantum considerations, you end up with over counting if the particles are identical. See Gibb's Paradox.
 
Right. Sorry, I meant to write
Z={1\over {N!}}(Z_1)^N
Does that take care of over counting?
What about the quantum case?
 
It is not true for the quantum case. The quantum case is easier handled via grand-partition function.
 
So in the quantum case, if we want to use the canonical ensemble, we have to calculate the whole partition function all in one shot?
 
Yep. But like I said, usually, you calculate the grand-partition function (which factorises neatly into a function of single particle states).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top