Pendulum and Simple Harmonic Motion Problems

AI Thread Summary
The discussion revolves around solving problems related to pendulums and simple harmonic motion. The first problem involves calculating the acceleration due to gravity on planet X using the pendulum's frequency and length, leading to a derived value of 36.70 m/s². The second problem correctly applies the formula for the period of a mass on a spring, yielding a period of approximately 44.43 seconds, emphasizing the need to convert grams to kilograms. The third problem focuses on finding the spring constant using the number of vibrations and time, with participants discussing the rearrangement of formulas for clarity. Overall, the conversation highlights the importance of understanding the relationships between mass, spring constant, and motion in simple harmonic systems.
think4432
Messages
62
Reaction score
0
1. Determine the value of the acceleration due to gravity on planet X if a pendulum having a length of 30.0 cm has a frequency of .70 hz on that planet?

2. Find the period of motion for a 200 gram mass vibrating on a spring having a spring constant of 4.0 n/m?

3. When a mass of 35.0 grams is attached to a certain spring, it makes 20 complete vibrations in 4.80 seconds. What is the spring constant for this spring?


equations: SHM: T=2pi sqr(m/k)


1. i have no idea...really
2. t=2pi sqr(200g/4 n/m) = 44.4288
3. k=4pi^2m/t^2
k=4pi^2(35g)/(4.1s)^2 [t=4.1s]
k=82.19 N/M


I don't understand the spring constant equation.

Please help?
 
Physics news on Phys.org
1) You know that the period of a pendulum is
T = 2\pi \sqrt{\frac{l}{g}}

and that f= \frac{1}{T}

2)Should be correct since you are using the correct formula

3) The periodic time, T is the time taken for one vibration.

20 vibrations occur in 4.8 s
1 vibration will occur in how much time?

Now use the equation T=2pi sqr(m/k) and rearrange it to get k
 
Ohh! Ok! I understand number 2, and 3.

But number 1 is still a little confusing.

So, T=2pi sqrt(L/a)
Frequency, f=1/T
f=(1/2pi)sqrt(a/L)

solve for a?

a=(1/4pi^2)L/T^2
(1/4pi^2)(30cm)/1.42^2

a=36.70 m/s^2 ?



and one more problem:
A 70.0 gram mass is hung from a vertical spring causing it to stretch 20.0 cm. Find the period of motion for this system when the 70.0 gram mass is replaced by a 90.0 gram mass and set into simple harmonic motion.

how would i set that up?

thanks for the help on the other 2 problems! :]
 
think4432 said:
Ohh! Ok! I understand number 2, and 3.

But number 1 is still a little confusing.

So, T=2pi sqrt(L/a)
Frequency, f=1/T
f=(1/2pi)sqrt(a/L)

solve for a?

a=(1/4pi^2)L/T^2
(1/4pi^2)(30cm)/1.42^2

a=36.70 m/s^2 ?
Yes solve for a. But recheck your rearranging of terms.

f = 1/2pi sqrt(a/l)
f2= (1/4pi2)(a/l)

think4432 said:
and one more problem:
A 70.0 gram mass is hung from a vertical spring causing it to stretch 20.0 cm. Find the period of motion for this system when the 70.0 gram mass is replaced by a 90.0 gram mass and set into simple harmonic motion.

how would i set that up?

When you placed the 70g mass (the weight causes it to stretch) on the spring it stretched by 20 cm, as it said right?
Remember Hooke's law? You can now find the spring constant,k.

When you have k, to find the period when the mass is 90grams just use the formula you stated above:

T= 2\pi \sqrt{\frac{m}{k}}
 
thank you so much!

great help!

now i might pass the test tommorow!

thanks again!
 
think4432 said:
2. t=2pi sqr(200g/4 n/m) = 44.4288

! 200g=.2kg! ALWAYS CONVERT, you CANNOT multiply grams by meters it WONT WORK!
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top