Pendulum velocity at any given angle

AI Thread Summary
The discussion centers on calculating the velocity of a pendulum bob at various angles, specifically when released from a 90° position. The initial confusion arises from the application of different equations for velocity, leading to an unexpected result where the velocity at 45° appears greater than at the equilibrium position. It is clarified that the maximum velocity occurs at the equilibrium position and is independent of mass, with the correct maximum speed calculated as 5.23 m/s. The user ultimately resolves their confusion by applying energy conservation principles, confirming that potential energy at maximum height converts to kinetic energy at the lowest point. The final equations derived effectively calculate the velocity at any angle based on height and energy conservation.
lgunseor
Messages
2
Reaction score
0
Trying to find an equation that will give me a pendulum bob velocity at any given angle if the pendulum is released from a 90° angle from it's equilibrium position. My parameters are as follows

9.8 (acceleration of gravity m/s^2)
1.397 (length of pendulum in meters)
.138 (mass of pendulum bob in kilograms)
90 (Θmax, maximum angle of the pendulum in degrees)
45 (Θ, the angle of interest for velocity in degrees)

Below is the equation that I found

v=√2*g*l/m*(cos(Θ) – cos(Θmax))
v=11.84

My confusion is that the equation for pendulum velocity at it's equilibrium position which should be the maximum velocity is less that at 45° in the above equation

v=√2*g*l*(1-cos(Θmax))
v=5.23

I understand that mass is in the first equation and not the second equation, but is the first equation correct for velocity at any angle? Is the equation for maximum velocity at the pendulum equilibrium position not correct? Any help would be appreciated.
 
Physics news on Phys.org
lgunseor said:
Trying to find an equation that will give me a pendulum bob velocity at any given angle if the pendulum is released from a 90° angle from it's equilibrium position. My parameters are as follows

9.8 (acceleration of gravity m/s^2)
1.397 (length of pendulum in meters)
.138 (mass of pendulum bob in kilograms)
90 (Θmax, maximum angle of the pendulum in degrees)
45 (Θ, the angle of interest for velocity in degrees)

Below is the equation that I found

v=√2*g*l/m*(cos(Θ) – cos(Θmax))
v=11.84

My confusion is that the equation for pendulum velocity at it's equilibrium position which should be the maximum velocity is less that at 45° in the above equation

v=√2*g*l*(1-cos(Θmax))
v=5.23

I understand that mass is in the first equation and not the second equation, but is the first equation correct for velocity at any angle? Is the equation for maximum velocity at the pendulum equilibrium position not correct? Any help would be appreciated.
I don't know where your equations are coming from. The speed at any point is independent of the mass. You are correct that the max speed is at the bottom of the swing and equal to v=√2*g*l = 5.23 m/s which comes from conservation of energy ...initial potential energy = final kinetic energy...you can do the same at 45 degrees to calculate the speed, which must be less than the max...the initial PE is mgh where h from some trig is 1.397sin45...then mgh = 1/2mv^2, m cancels, solve for v = 4.4 m/s.
 
lgunseor said:
Trying to find an equation that will give me a pendulum bob velocity at any given angle if the pendulum is released from a 90° angle from it's equilibrium position. My parameters are as follows

9.8 (acceleration of gravity m/s^2)
1.397 (length of pendulum in meters)
.138 (mass of pendulum bob in kilograms)
90 (Θmax, maximum angle of the pendulum in degrees)
45 (Θ, the angle of interest for velocity in degrees)

Below is the equation that I found

v=√2*g*l/m*(cos(Θ) – cos(Θmax))
v=11.84

My confusion is that the equation for pendulum velocity at it's equilibrium position which should be the maximum velocity is less that at 45° in the above equation

v=√2*g*l*(1-cos(Θmax))
v=5.23

I understand that mass is in the first equation and not the second equation, but is the first equation correct for velocity at any angle? Is the equation for maximum velocity at the pendulum equilibrium position not correct? Any help would be appreciated.

cos(Θmax) is zero (the maximum angle is 90 degrees, isn't it?)
So your formula should be
v=√[2*g*l*(cos(Θ)]

which is maximum for Θ=0.

Cos of 45 is √2/2.
 
There should be no mass in that equation.
 
Thanks for the feedback, ended up answering my own question. Went at it from the energy conservation standpoint.

a=[90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0]; // angle to calculate velocity at

g=9.8; //acceleration of gravity (meters/sec^2)
l=1.397; // length (meters)
ao=90; // maximum angle (degrees)
m = .138; // mass (kilograms)


ME=m*g*l // ME = PE + KE, PE=ME at 90 degree max bob height, KE=0

h=l-(cos(a)*l) // pendulum bob height at a given angle
PE=m*g*h // Potential Energy calculation
KE=ME-PE // Kinetic energy at a given angle
v_angle=sqrt(KE*2/m) // pendulum bob velocity at a given angle

plot of angle vs velocity (see attached JPG file)

At 90° (max pendulum bob height) 0 meters/sec velocity
AT 0° (0 pendulum bob height) equilibrium position 5.23 meters/sec velocity
 

Attachments

  • angle vs velocity.jpg
    angle vs velocity.jpg
    33.7 KB · Views: 1,110
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...

Similar threads

Replies
1
Views
2K
Replies
2
Views
849
Replies
76
Views
6K
Replies
11
Views
2K
Replies
19
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top