Probability that a magnetic dipole is oriented with theta

potatowhisperer
Messages
31
Reaction score
1
1.
the problem goes like this :
The energy of interaction of a classical magnetic dipole with the magnetic field B is given by
E = −μ·B.
The sum over microstates becomes an integral over all directions of μ. The direction of μ
in three dimensions is given by the angles θ and φ of a spherical coordinate system
The integral is over the solid angle element
= sin θdθdφ. In this coordinate system
the energy of the dipole is given by E = −μB cos θ.
Choose spherical coordinates and show that the probability p(θ, φ)dθdφ that the dipole is
between the angles θ and + dθ and φ and φ + dφ is given by

p(θ, φ)dθdφ = (e^(μB cos θ) sin(θ) dθ dφ)/z
2. Homework Equations


z = ∫∫ e^(μB cos θ) sin(θ) dθ dφ .

The Attempt at a Solution


i have no idea what to do , and i tried all i know
i know that the Boltzmann distribution gives you the probability that a particle has an energy is :
e^([/B]μB cos θ)/∫e^(μB cos θ) , but how do i integrate the spherical coordinates i don t know . please help me and thank you .
 
Last edited:
Physics news on Phys.org
this is the best that i could do
the probability that the dipole between x and dx is
dp(x) = (1 / Z ) e^(μ(x)B cos θ) dx = dx because we assume that B is parallel to z so μ(x) . B = 0
dp(y) =
(1 / Z ) e^(μ(y)B cos θ) dy = dy
dp(z) = (1 / Z )e^(μ(z)B cos θ) dz
d^3 p( x,y,z)= (1 / Z )e^(μ(z)B cos ) dz dy dx = (1 / Z )e^(μ(z)B cos θ) dv
d^3 p( r,
θ,)
= (1 / Z )e^(μ(z)B cos θ) rd²r dθ dφ

is this true ? or am i making horrible mistakes ?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top