Projectile hitting the incline plane horizontally

AI Thread Summary
The discussion revolves around determining the angle θ at which a projectile strikes an inclined plane horizontally, specifically when the incline is at 45 degrees. The initial attempt incorrectly concluded that θ must be 45 degrees, while the correct solution involves recognizing that the projectile's velocity components must be equal in magnitude, leading to the relationship u(cosθ + sinθ) = √2gt. Further calculations reveal that the correct angle is θ = arctan(-1/3), which can also be expressed as arctan(2) - 45 degrees through trigonometric identities. The conversation highlights the importance of considering the magnitudes of velocity components and the time of flight in solving projectile motion problems. Overall, the collaborative effort helped clarify the solution process for the problem.
Saurav7
Messages
4
Reaction score
0

Homework Statement


A projectile is thrown at angle θ with an inclined plane of inclination 45o .
Find θ if projectile strikes the inclined the plane horizontal

Homework Equations


Taking x-axis along the incline and y-axis perpendicular to incline.[/B]
Vx=ucosθ - gsint(45)t
Vy=usinθ - gcos(45)t

These are the velocities after time t.
Vx=Velocity along the plane after time t.
Vy=Velocity perpendicular to plane after time t.

The Attempt at a Solution


As at the time of horizontal collision with the incline. The projectile will make an angle of 45o with the incline and hence the velocity of projectile V=Vcos45i + Vsin45j which means the x and y components of velocity are equal (as sin45=cos45).
And hence I applied the condition that Vx=Vy
that gives us:
ucosθ - gsint(45)t = usinθ - gcos(45)t
=> ucosθ-usinθ = gsin(45)t-gcos(45)t
=>u(cosθ-sinθ) = gt(sin45-cos45)
=>u(cosθ-sinθ)=0 (as sin45=cos45)
=>cosθ-sinθ=0
=>cosθ=sinθ => Tanθ=1
which gives θ=45o

But the answer is θ = tan-1(2) - 45o
I know how the right solution came but I am more bothered about what was wrong in my attempt that I got it incorrect.
 

Attachments

  • IMG_20160619_100908.jpg
    IMG_20160619_100908.jpg
    39.7 KB · Views: 833
Last edited:
Physics news on Phys.org
Saurav7 said:
Vx=Vy
This is right, but mint the same quality is their "magnitude" so you must put ##|u\cos\theta - g\sin\frac{\pi}{2}t |= |u\sin\theta - g\cos\frac{\pi}{2}t|.## Then the answer is one of the condition (throwing upwards).
 
  • Like
Likes Saurav7
tommyxu3 said:
This is right, but mint the same quality is their "magnitude" so you must put ##|u\cos\theta - g\sin\frac{\pi}{2}t |= |u\sin\theta - g\cos\frac{\pi}{2}t|.## Then the answer is one of the condition (throwing upwards).

I can't solve it further.Can you help me a bit further?
Thanks in advance.
 
You will get ##u(\cos\theta+\sin\theta)=\sqrt{2}gt,## (of course the other direction of your original one), but you cannot solve it with just this. My hint is to observe that the object finally falls on the plane again.
 
tommyxu3 said:
You will get ##u(\cos\theta+\sin\theta)=\sqrt{2}gt,## (of course the other direction of your original one), but you cannot solve it with just this. My hint is to observe that the object finally falls on the plane again.

Thanks a lot brother. I got u(cosθ+sinθ)=√2gt and this happens at t=Time of flight so we get
t=T=2usinθ/(gcos45)
Putting in the values I got 3sinθ+cosθ=0
Then dividing by cosθ on both sides,we get;
3tanθ+1=0
and finally θ=arctan(-1/3)

I don't know if this is the right result.
 
Saurav7 said:
Putting in the values I got 3sinθ+cosθ=0
Plugging the value you may get ##u(\cos\theta+\sin\theta)=\sqrt{2}gt=4u\sin\theta,## so it must be ##\cos\theta=3\sin\theta## instead of what you get.
You can get ##\arctan \frac{1}{3}=\arctan{2}-\frac{\pi}{4}## by some trigonometric knowledge.
 
tommyxu3 said:
Plugging the value you may get ##u(\cos\theta+\sin\theta)=\sqrt{2}gt=4u\sin\theta,## so it must be ##\cos\theta=3\sin\theta## instead of what you get.
You can get ##\arctan \frac{1}{3}=\arctan{2}-\frac{\pi}{4}## by some trigonometric knowledge.
Man,you are a life saver to me. I was stuck on this since yesterday night :D . Thanks a lot,a lot. :D
Is there any other way to connect with you in case I get stuck again to some other question :P
Like can I PM you or something :D
Again,Thanks a lot. :)
 
You can similarly discuss with everyone here like just now~ or maybe you can send me messages in the conversations directly also haha.
 
  • Like
Likes Saurav7
Back
Top