Prove formula for the product of two exponential operators

astrocytosis
Messages
51
Reaction score
2

Homework Statement



Consider two operators A and B, such that [A,[A, B]] = 0 and [B,[A, B]] = 0 . Show that

Exp(A+B) = Exp(A)Exp(B)Exp(-1/2 [A,B])

Hint: define Exp(As)Exp(Bs) as T(s), where s is a real parameter, differentiate T(s) with respect to s, and express the result in terms of T(s). Then use the Baker-Hausdorff lemma, and finally simply integrate your expression.

Homework Equations


[/B]
Baker-Hausdorff Lemma

e-B A eB = A + [B,A] + 1/2! [B,[B,A]] + 1/3! [B,[B,[B,A]]] +...

The Attempt at a Solution



I did what the hint said and took the derivative of T(s)

T'(s) = Exp(A s)Exp(B s) B + Exp(B s)Exp(A s) A

T'(s) = T(s) * (A + B)

but I am very lost as to how to proceed for here. I don't see how the Baker-Hausdorff lemma can be applied to this. I looked online for a derivation of this formula, but they all seemed more complicated than what the problem is asking for, and none of them defined a function like T(s) (that I saw). I think I must be fundamentally misunderstanding something here but I can't figure out what it is. I tried computing T(s) for the case where A, B depend on s, but that just made things more confusing.
 
Physics news on Phys.org
astrocytosis said:

Homework Statement



Consider two operators A and B, such that [A,[A, B]] = 0 and [B,[A, B]] = 0 . Show that

Exp(A+B) = Exp(A)Exp(B)Exp(-1/2 [A,B])

Hint: define Exp(As)Exp(Bs) as T(s), where s is a real parameter, differentiate T(s) with respect to s, and express the result in terms of T(s). Then use the Baker-Hausdorff lemma, and finally simply integrate your expression.

Homework Equations


[/B]
Baker-Hausdorff Lemma

e-B A eB = A + [B,A] + 1/2! [B,[B,A]] + 1/3! [B,[B,[B,A]]] +...

The Attempt at a Solution



I did what the hint said and took the derivative of T(s)

T'(s) = Exp(A s)Exp(B s) B + Exp(B s)Exp(A s) A
You moved the Exp(As) A to the right of Exp(Bs) which is not allowed if A and B don't commute. Be careful to not switch the order of the A and B operators,
 
I thought an analytic function of an operator returned a function of its eigenvalue so it wouldn't matter... but then how can I write it in terms of T(S)?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top