Pulley suspending two different masses lifted upwards

AI Thread Summary
The discussion revolves around calculating the acceleration and tension in a system with two different masses connected by a pulley. Three scenarios based on the force applied (F) are outlined to determine the acceleration of each mass and the tension in the rope. Participants emphasize the importance of using free-body diagrams to analyze the forces acting on each mass separately. There is a focus on clarifying variables and ensuring that the problem is framed correctly to facilitate accurate calculations. The conversation highlights the need for a structured approach to problem-solving in physics, particularly in dynamics involving pulleys.
Sabatie
Messages
2
Reaction score
0
Pulley with upward force.jpg
The force F pulls upwards two masses, m1 and m2(m2>m1), which are connected to each othet via a massless pulley. The masses are perched on the ground before movement starts.

A. What is the acceleration of each one of the respective masses in each of the following situations:
1)F<2*m1*g
2)2*m1*g<F<2*m2*g
3)2*m2*g<F

B. What is the rope's tension in each situation?

Though I'd viewed similar questions posted here, I couldn't draw any solution to this particular case involving as many parmeters as it does. Also, since, as I understand it, the heavier mass doesn't accelerate at all during the first stages of movement, but later does, I didn't grasp how to calculate the acceleration.
I assumed that I should first treat both masses as one, and then address each seperately - though I wasn't sure how to proceed in that direction.
IMG_20150207_012054.jpg
(sorry for the inverted image)
Any help would be appreciated.

Thank you.
 
Physics news on Phys.org
Hello Sabatie, welcome to PF :)

Did you notice the template ? Pity it's gone now. It helps you to provide some essential information to potential helpers. I, for example, now have no idea whatsoever what you mean by a. The template provides space for all variables and given/known data. And I also have no idea if you know which equations you need to work out this exercise. The so-called Relevant equations.

1. The problem statement, all variables and given/known data
2. Relevant equations3. The Attempt at a Solution

Yes, there is something, but it now hangs loose in the air.
Which, as it happens, is a hint for you: make free-body diagrams for the three parts separately and then connect them.

On the bright side:
You are well under way. It's just that you haven't pinned down a. What is it and what is the relationship between your a and what is really asked for in part A of the exercise ? (Read it again, word for word...)
 
BvU said:
Hello Sabatie, welcome to PF :)

Did you notice the template ? Pity it's gone now. It helps you to provide some essential information to potential helpers. I, for example, now have no idea whatsoever what you mean by a. The template provides space for all variables and given/known data. And I also have no idea if you know which equations you need to work out this exercise. The so-called Relevant equations.

1. The problem statement, all variables and given/known data
2. Relevant equations3. The Attempt at a Solution

Yes, there is something, but it now hangs loose in the air.
Which, as it happens, is a hint for you: make free-body diagrams for the three parts separately and then connect them.

On the bright side:
You are well under way. It's just that you haven't pinned down a. What is it and what is the relationship between your a and what is really asked for in part A of the exercise ? (Read it again, word for word...)

Hello, and thank you for the welcome and reply. I apologize for not adhering to the template; I sincerely thought I had framed my question comprehensively.

Here are the diagrams:
2.jpg


I would appreciate it if you could shed some light on how I am to find the pulley's acceleration and, by doing so - find each body's acceleration(which are identical, since they move correspondingly).
 
Sabatie said:
find each body's acceleration(which are identical, since they move correspondingly).
No, the accelerations are different.
What is g'? Please define any variables that might not be self evident.
I can't quite make out some of your subscripts. The facility for posting images is not intended for handwritten text and equations, just diagrams.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top