Reducing voltage with two resistors

  • Thread starter Thread starter banoosh
  • Start date Start date
  • Tags Tags
    Resistors Voltage
AI Thread Summary
To reduce a 6.0 V battery to 5.0 V for a computer chip using two resistors in series, the equivalent resistance must be calculated. The first resistor is 330 Ohms, and the voltage divider principle applies here. The user initially attempted to calculate the required resistance for the second resistor but made an error in their calculations. It was clarified that the computer chip is in parallel with the second resistor, which affects the voltage drop across it. The goal is to determine the value of the second resistor that ensures a 5 V drop across it.
banoosh
Messages
3
Reaction score
0

Homework Statement



An electric potential of 5.0 V is required to run certain computer chips. A 6.0 V battery may be used to do this but it must be connect to two resistors in series. Supposing one has a resistance of 330 Ohms what should the other be? (The computer chip will be driven by the voltage across only one of the two resistors.)

Homework Equations


Req= R1+R2+...
Voltage=current x req

The Attempt at a Solution


I realize that equivalent resistance for series circuits just involves simple addition, but I don't know how to tie that in with voltage. Initially I tried solving for current (330 ohms(I)= 6V) and got .018 Amperes. plugged that into 5 volts to find the req (5v= R(.018)) and came out with 277. subtracted that from 330 and got 53 which is wrong. ?
 
Physics news on Phys.org
The question is awkwardly worded, but the key is in the parentheses at the end. Picture the two resistors in series. Picture the computer chip in parallel with the second resistor. Finally assume that the computer chip draws very little current compared to what flows through the two resistors. (A terrible assumption if this were the real world). Can you find a value for the second resistor such that the voltage drop across the second resistor is 5 volts?
 
  • Like
Likes banoosh
Look up: voltage divider
 
Moderator note: I've re-named your thread to: Reducing voltage with two resistors. Thread titles must be descriptive of the question or problem being asked, not a plea for help. Refer to the pinned thread: Guidelines for students and helpers pinned at the top of the thread list for more information.
 
Cutter Ketch said:
The question is awkwardly worded, but the key is in the parentheses at the end. Picture the two resistors in series. Picture the computer chip in parallel with the second resistor. Finally assume that the computer chip draws very little current compared to what flows through the two resistors. (A terrible assumption if this were the real world). Can you find a value for the second resistor such that the voltage drop across the second resistor is 5 volts?
thanks! the wording of the question did confuse me, so much appreciated
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top