Resistance of infinite nested triangles

AI Thread Summary
The discussion revolves around calculating the overall resistance between two points in a structure of infinitely nested equilateral triangles made of wire. The initial approach involves using the resistivity formula, but participants note the lack of sufficient information regarding area and length. A suggestion is made to express the resistance in terms of a variable and to analyze the structure layer by layer. It is emphasized that the triangles' dimensions decrease geometrically, allowing for self-similarity in the resistance calculations. Ultimately, the resistance can be derived by equating values from different layers of the triangle network.
Mtnbiker
Messages
5
Reaction score
0

Homework Statement


Here is an interesting problem... there is a wire bent in the shape of an equilateral triangle, side length = a and resistivity = rho.

In the center of this triangle is another equilateral triangle (inverted, side = a/2, resistivity = rho) and so on into infinity. What is the overall resistance between points A and B in terms of a and rho?

circuit.jpg


Homework Equations



R = (rho * length)/area

The Attempt at a Solution



I started by using the equation for resistivity, R = (rho * length)/area, but I wasn't sure if area would apply here. We aren't given any information about the wire beyond the shape and length. So I'm really asking for help in determining a good starting point... I don't know of any other equations that would incorporate rho and length.
 
Last edited:
Physics news on Phys.org
Welcome to PF!

Mtnbiker said:
… In the center of this triangle is another equilateral triangle (inverted, side = a/2, resistivity = rho) and so on into infinity. What is the overall resistance between points A and B in terms of a and rho?

I started by using the equation for resistivity, R = (rho * length)/area, but I wasn't sure if area would apply here. We aren't given any information about the wire beyond the shape and length. So I'm really asking for help in determining a good starting point... I don't know of any other equations that would incorporate rho and length.

Hi Mtnbiker! Welcome to PF! :wink:

I don't think you can solve this on the information given. :frown:

I suggest you say "let the resistance be R/a times length", and carry on from there. :smile:
 


tiny-tim said:
Hi Mtnbiker! Welcome to PF! :wink:

I don't think you can solve this on the information given. :frown:

I suggest you say "let the resistance be R/a times length", and carry on from there. :smile:

Hi... thanks for the welcome, I'm glad to be here.

I agree with you regarding keeping the area incorporated in the answer. However, I'm still struggling with what exactly would the length be (first triangle is 3a, second triangle is 3a/2, then 3a/4 and so on...). There is a point of diminishing returns, so I need to find that point.

Thanks for the input!
 
Hi Mtnbiker! :smile:

Yes, you're correct … obviously each triangle has sides half the length of the next one out.

So assume there are n triangles, start from the inside, and work your way outward …

at each stage, get rid of one triangle and calculate the equivalent resistances along the three sides of the next triangle. :wink:
 
If the network is infinite you can use self similarity. Call the overall resistance between two vertices on the first inner triangle R. Now you have a simple network with three wires of resistance R and and six of resistance a*rho/2. Solve that for the resistance beween A and B in terms of R. Then realize that the outer triangular network is the same as the inner triangular network, but twice as big. So the resistance from A to B is also just 2R. Equate the two values and solve for R.
 
Thanks guys!
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top