Resultant equation of two identical out of phase waves

AI Thread Summary
The discussion focuses on calculating the amplitude of the resultant wave formed by two identical traveling waves that are out of phase by π/5 radians. The resultant amplitude is derived using trigonometric identities, resulting in the equation Ym = 2ym cos(π/10), leading to a ratio of Ym/ym = 2 cos(π/10) = 1.902. Participants confirm the correctness of this calculation and suggest using LaTeX for clearer presentation of equations in future posts. The conversation emphasizes the importance of clarity in mathematical communication. Overall, the solution and method presented are validated by the forum members.
Any Help
Messages
79
Reaction score
2

Homework Statement


Two identical traveling waves, moving in the same direction, are out of phase by π/5.0 rad. What is the amplitude of the resultant wave in terms of the common amplitude ym of the two combining waves? (Give the answer as the ratio of the total amplitude to the common amplitude.)

Homework Equations


Let y=ym.sinx be the equation of a wave where x is a variable time dependent. and ym is the maximum amplitude.
Let y=ym.sin(x+ π/5.0) be the equation of a second identical wave but out of phase by π/5.0
In trigonometric equations: sin(a)+sin(b)=2sin(0.5(a+b)).cos(0.5(a-b))

The Attempt at a Solution


the resultant equation will be:
Y=ymsinx + ym.sin(x+ π/5.0)
Y=ym(sinx + sin(x+ π/5.0))
....but sinx + sin(x+ π/5.0)=2sin(0.5(x+x+π/5.0)).cos(0.5(x-x-π/5.0))
....=2sin(x+π/10.0).cos(π/10.0)
Y=ym(2sin(x+π/10.0).cos(π/10.0))
then Ym=2ym.cos(π/10.0) therefore Ym/ym=2 cos(π/10.0)=1.902
is that correct ? and is that the ratio they want?
 
Physics news on Phys.org
Yes, this is correct. You may want to use LaTeX in the future to make your work more legible, but good work.
 
anlon said:
Yes, this is correct. You may want to use LaTeX in the future to make your work more legible, but good work.
What do you mean LateX? Is there another way to solve it?
 
##\LaTeX## is a formatting system for writing equations and papers that look nice. For example, instead of writing:
Ym=2ym.cos(π/10.0) therefore Ym/ym=2 cos(π/10.0)=1.902
You can write $$Y_m = 2y_m \cos{\left(\frac{\pi}{10}\right)} \Rightarrow \frac{Y_m}{y_m} = 2 \cos{\left(\frac{\pi}{10}\right)} = 1.902$$This can also be written inline with other text: ##Y_m = 2y_m \cos{\left(\frac{\pi}{10}\right)} \Rightarrow \frac{Y_m}{y_m} = 2 \cos{\left(\frac{\pi}{10}\right)} = 1.902## which is often useful. In the bottom left corner of the reply box there is a link to the forum LaTeX guide, which tells you how to do this in the forum (wrap standalone equations in "$$" without quotes and wrap inline equations with "##" without quotes).
 
Okay I'll try it next time. Thanks :)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top