What is the Period and Amplitude of a Pendulum on a Rocket?

  • Thread starter Thread starter iwonde
  • Start date Start date
  • Tags Tags
    Pendulum Rocket
AI Thread Summary
The discussion revolves around calculating the period and amplitude of a pendulum inside a rocket accelerating upward at 4.00 m/s². The correct formula for the period incorporates the net acceleration, which is the sum of gravitational acceleration and the rocket's upward acceleration. The amplitude of the pendulum is determined by its maximum angular displacement, which is limited to the initial displacement of 8.50 degrees, converted to radians. The participants emphasize the importance of understanding the physical implications of the pendulum's motion in a non-inertial frame. Ultimately, the amplitude remains constant while the period is influenced by the net acceleration acting on the pendulum.
iwonde
Messages
30
Reaction score
0

Homework Statement


A rocket is accelerating upward at 4.00 m/s^2 from the launchpad on the earth. Inside a small 1.50-kg ball hangs from the ceiling by a light 1.10-m wire. If the ball is displaced 8.50 degrees from the vertical and released, find the amplitude and period of the resulting swings of the pendulum.


Homework Equations


T = 2pi \sqrt{L/g}
\omega = /sqrt{g/L}
x = Acos(\omegat + \phi)

The Attempt at a Solution


I think this is a simple pendulum problem.

T = 2pi /sqrt{1.1/4} = 3.29 s, I relplaced g with the upward acceleration of the rocket.

I'm trying to solve for A from the equation that I have for x, but I don't have t.
 
Physics news on Phys.org
**** About acceleration *****

You identified the wrong acceleration. The pendulum would fall at a rate of g if the rocket was unaccelerated, right? Your procedure would indicate otherwise. You would formally argue this from Newton's 2nd Law, but I'll just tell you that you should replace g with a + g. That way (a) if a = 0 you get back what you usually have, and (b) if a = -g the rocket is in freefall, the pendulum does not work and you get an infinite period.

**** About amplitude *****

Don't look at that equation, think about what is happening physically. Amplitude is the maximum displacement of whatever is executing periodic motion. In the case of the pendulum, it is the angular displacement that is executing periodic motion and it can go no further than it's initial displacement of 8.50 degrees because if it is dropped from rest, it's the turning point of the motion, going out further in angular displacement from the vertical would require negative kinetic energy, which is impossible.
 
The ball on the pendulum is feeling Earth's gravitational force and a force due to a noninertial system. Sum up the two accelerations. If it is assumed the net acceleration is constant, then the amplitude of the pendulum should stay approximately constant. The amplitude is the farthest angle the pendulum will travel from the equilibrium point, which in this case is the initial displacement. The amplitude for a pendulum is given in radians...so the answer for that should just be the conversion of 8.50 degrees to radians. The period of the pendulum depends on the acceleration, which in this case is the net acceleration. Using that and the length of the wire, you could find the period.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top