Rotating cylinder on x'-axis in S' frame. Find twist per unit length in S frame

crissyb1988
Messages
42
Reaction score
0

Homework Statement


A cylinder rotating uniformly about the x' axis of S' will seem twisted when observed instantaneously in S, where it not only rotates but also travels forward. If the angular speed of the cylinder in S' is ω, prove that in S the twist per unit length is yωv/c(squared). Here S and S' are inertial frames of reference in the standard configuration with respect to one another. y= gamma factor


Homework Equations


twist per unit length = yωv/c(squared)
Lorentz equations
Inverse Lorentz equations


The Attempt at a Solution



By twist per unit length ii think it means dθ/dx where the x-axis lines up with the axis of the cylinder?.

We can write the angular speed as
ω= dθ'/dt',
and then transposing we get
dθ'=ωdt'
because theta is in the z-y plane we can say that dθ'=dθ ?

So subbing in dt'=y(dt-vdx/c2) we get

dθ= ωy(dt-vdx/c2)

divide thru by dx we get

dθ/dx= ωy( dt/dx - v/c2)

dθ/dx = ωy/v - ωyv/c2

The answer should be dθ/dx = ωyv/c2 . BTW I don't think it matters about the negative sign but why am i left with ωy/v ?

Would really appreciate some hints :)
 
Physics news on Phys.org
It's the comparison, at fixed time t in S of elements of the cylinder separated by dx AND that correspond to elements in S' with same θ' for a fixed t'. The thing is (x,t) and (x+dx,t) correspond to two different times t1' & t2' in S'. Elements of the cylinder with θ' at t1' are at θ'+ω(t2'-t1') at t2'.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top