jisbon said:
Oh, I figured that my left-hand rule was wrong because I misread how current is travelled.
It's a right hand rule. The left hand rule gives you the opposite direction.
jisbon said:
I figured out that the force caused by magnetic field is: F=BIL(sin50) since the angle between current and magnetic field is 90-40.
You figured out incorrectly. Look at your drawing. The fact that the cylinder lies on an incline is irrelevant.
jisbon said:
Upon further asking my teacher for hints, he stated that with this force I can simply find the acceleration by diving by mass since F=ma.
Your teacher's suggestion is to the point but not very useful. You can
always find the acceleration by dividing the net force F
net by the mass. The real question is how to find an expression for F
net. To do that (a) draw a complete free body diagram; (b) find expressions for all the forces in the diagram in terms of symbols representing the given quantities and (c) add all these forces
as vectors to find the net force.
jisbon said:
The question is what about friction and mgsin theta? Why is it applicable to ignore in this case?
Friction is one of the forces acting on the cylinder and ##mg\sin\theta## is the component of the weight parallel to the incline. Neither is (or should be) ignored.
The two equations you must express in terms of the given quantities
symbolically are$$\vec F_{net}=m\vec a_{cm}~;~~\vec {\tau}_{net}=I\vec {\alpha}$$Because the cylinder rolls without slipping, you can relate the magnitude of the acceleration of the center of mass to the magnitude of the angular acceleration by ## a_{cm}=\alpha R##, where ##R## is the radius of the cylinder, not the resistance.
Perhaps you should first solve this problem in zero magnetic field with the cylinder just rolling down the incline due to the effect of gravity alone. That will show you how the two equations can be brought together to get the acceleration. Once you understand that, then you can add the magnetic field. As
@TSny suggested in #3, you may find that given the numbers in this problem, the effect of having the field on is just as negligible as air resistance. IMO the pedagogical value of this problem lies in solving it symbolically as given.