Scalar triple product invariance under circular shift proof

AI Thread Summary
The discussion centers on proving the scalar triple product invariance for three vectors, specifically that ##\hat a \cdot (\hat b \times \hat c) = (\hat a \times \hat b) \cdot \hat c##. A user initially attempted to calculate both sides of the equation but found their results did not match, leading to confusion. The key realization was that the scalar triple product yields a scalar value, not a vector, which clarified the misunderstanding. The user acknowledged that viewing the results as algebraic expressions rather than vectors helped reconcile the apparent discrepancy. Ultimately, the conversation emphasizes the importance of recognizing the scalar nature of the triple product in vector calculations.
pastoreerrante
Messages
2
Reaction score
0

Homework Statement


Prove that for any three vectors ##\hat a, \hat b ## and ## \hat c##, ##\hat a \cdot (\hat b \times \hat c)## = ##(\hat a \times \hat b) \cdot \hat c ##

Homework Equations


[/B]
## \hat i \cdot \hat i = \hat j \cdot \hat j = \hat k \cdot \hat k = (1)(1)\cos(0) = 1 ##
## \hat i \cdot \hat j = \hat i \cdot \hat k = \hat j \cdot \hat k = (1)(1)\cos(90) = 0 ##

The Attempt at a Solution



I tried this procedure:

1. calculate the inner cross product ##(\hat b \times \hat c)## and ##(\hat a \times \hat b) ##
2. dotting the resulting vector with the third remaining vector (## \hat a ## and ## \hat c ## respectively)
3. I expected that the resulting vectors were identical in terms of their components, but they aren't.


These are the calculations for the LHS of my thesis:

1. ##(\hat b \times \hat c) ##= ##(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k##

2. dotting with ## \hat a ##:

## (a_x \hat i + a_y \hat j + a_z \hat k)## ## \cdot [(b_y c_z - b_z c_y)\hat i## + ##(b_z c_x - b_x c_z)\hat j## + ##(b_x c_y - b_y c_x)\hat k]## =
##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##

Now the calculations for the RHS of my thesis
:

1. ##(\hat a \times \hat b) ##= ##(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k##

2. dotting with ## \hat c ##:

## (c_x \hat i + c_y \hat j + c_z \hat k)## ## \cdot [(a_y b_z - a_z b_y)\hat i## + ##(a_z b_x - a_x b_z)\hat j## + ##(a_x b_y - a_y b_x)\hat k]## =
##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##


Clearly,

##(a_x b_y c_z - a_x b_z c_y)\hat i## + ##(a_y b_z c_x - a_y b_x c_z)\hat j## + ##(a_z b_x c_y - a_z b_y c_x)\hat k##

is not equal to:

##(a_y b_z c_x - a_z b_y c_x)\hat i## + ##(a_z b_x c_y - a_x b_z c_y)\hat j## + ##(a_x b_y c_z - a_y b_x c_z)\hat k##

What am I missing here?

Thank you in advance
 
Physics news on Phys.org
You can never get a vector as a result from a scalar product. Your result should be a number.
 
Thank you, I got it! If I don't consider the results as vectors but as normal algebraic expressions, they are perfectly equivalent.
 
pastoreerrante said:
If I don't consider the results as vectors but as normal algebraic expressions, they are perfectly equivalent.

This rings a warning bell for me. It is not a matter of considering the result as a vector or not, the result of the triple product is a scalar and not a vector.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top