Simple Bernoulli's exercise to find air flow rate

AI Thread Summary
The discussion revolves around a Bernoulli exercise involving airflow rate calculations through a venturi-like system. The user encountered an error in Excel due to a negative value in the denominator of their flow rate equation. After deriving the equation from the original Bernoulli equation, they realized the mistake stemmed from incorrectly handling the pressure difference (deltaP) and the order of subtraction. They successfully calculated the velocity (v2) instead of the flow rate (Q) and sought clarification on how time units are derived from the variables in the equation. Understanding the relationship between pressure, density, and area is essential for converting these measurements into appropriate distance/time units.
levi415
Messages
5
Reaction score
0
I'm having problems with what seems like a simple Bernoulli exercise where I can plug in all known variables but not get an answer (using Excel).

If I reduce my system down, it would be exactly like a venturi/pipe flow problem except that flow is in the direction of small pipe to large pipe. P1 and A1 are for small pipe, P2 and A2 are for larger pipe.
P1=60psi
A1=.002in^2 (very small orifice)
P2=55psi
A2=.307in^2
density (rho) air at 90F/60psi=.367lb/ft^3
Bernoulli's eqn at continuity gives flow rate Q = A2*[((2*deltaP)/rho)/(1-(A2/A1)^2)]^0.5

When I plug in the numbers as shown, I get a number error in Excel because the 1-(A2/A1)^2 in the denominator ends up negative.

Any ideas where I might have gone wrong? Thanks very much.
 
Engineering news on Phys.org
Why not just start from the actual Bernoulli equation? You can derive the equation you just cited and determine that your denominator is flipped. It should be
\left(\frac{A_2}{A_1}\right)^2 - 1
 
Thanks, boneh3ad. I actually did derive the above equation from the original where
P1+0.5*rho*v1^2 = P2+0.5*rho*v2^2. Since A1v1 = A2v2, I solved for v2 and substituted back into the original.
I think my error was... as I was ignoring the sign of my deltaP, I was subtracting from the wrong side of the equation, i.e., I should have been subtracting system 1 variables from system 2 variables. Anyway, I came up with an answer for v2 (instead of finding Q). V is what I want anyway.
What confuses me is... where do the time units come into the equation? How do rho, area, and pressure give me a distance/time unit?
 
The SI unit of pressure, the pascal has units
\frac{kg\;m}{s^2\;m^2}
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top