Solved: Flow over Spillway: Calculating Q with Bernoulli & Torricelli

  • Thread starter Thread starter kubaanglin
  • Start date Start date
  • Tags Tags
    Flow
Click For Summary
The discussion focuses on calculating the flow rate \(Q\) over a spillway using Bernoulli's and Torricelli's equations. The initial equation proposed for \(Q\) is \(Q = wy\sqrt{2gy}\), but participants explore how to incorporate the average velocity of the fluid over the entire height of the spillway. It is clarified that the height should not simply be \(y\) or \(\frac{y}{2}\), but rather requires integration to account for the varying flow across the height. The correct derivation leads to the final formula \(Q = \frac{2}{3}w\sqrt{2gy^3}\). The conversation concludes with a confirmation of the solution's accuracy.
kubaanglin
Messages
47
Reaction score
5

Homework Statement


[/B]
When the level of water in a reservoir is too high, the water spills out over a spillway,
as illustrated in the figure below

jxI5TK0.jpg


Neglecting viscosity, show that the water flow ##Q## over the spillway is given by
$$Q=\frac{2}{3}w\sqrt{2gy^3}$$

Homework Equations


[/B]
Bernoulli's Equation: ##P_1+\rho gh_1+\frac{1}{2}\rho v_1^2=P_2+\rho gh_2+\frac{1}{2}\rho v_2^2##
Torricelli's Equation: ##v=\sqrt{2gh}##

The Attempt at a Solution



##Q=Av=(wy)(\sqrt{2gy})=w\sqrt{2gy^3}##

I am not sure how to get ##\frac{2}{3}## in this equation as indicated by the answer. I feel that I am oversimplifying this by assuming the height in Torricelli's equation is just ##y## when it should account for flow over an area as opposed to a point. Would this mean the height is ##\frac{y}{2}## to get the average velocity of the fluid?
 
Physics news on Phys.org
kubaanglin said:
it should account for flow over an area as opposed to a point.
Yes. The consequence for the total flow varies as the height above the spillway increases from0 to y.
kubaanglin said:
Would this mean the height is ##\frac{y}{2}## to get the average velocity of the fluid?
No, that's still too simplistic. Consider a thin horizontal slice from x to x+dx above the spillway. What is the flow due to that?
 
Oh, that makes sense.

##Q=Av=(wy)\int_0^y (\sqrt{2gy})=(wy\sqrt{2g})\int_0^y \sqrt{y}=(wy\sqrt{2g})(\frac{\sqrt{y^3}}{\frac{3}{2}})=\frac{2}{3}w\sqrt{2gy^3}##

Thank you!
 
kubaanglin said:
Oh, that makes sense.

##Q=Av=(wy)\int_0^y (\sqrt{2gy})=(wy\sqrt{2g})\int_0^y \sqrt{y}=(wy\sqrt{2g})(\frac{\sqrt{y^3}}{\frac{3}{2}})=\frac{2}{3}w\sqrt{2gy^3}##

Thank you!
Good job.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...