- #1

ubiquinone

- 43

- 0

Diagram:

Code:

```
_____
| |
| A |______________
_|_____|______________O\
/ |
| |
| _|_
|| | B
||___|
| |
| _|_
|| | C
|| |
||___|
```

I've started the problem by treating mass B and C as one big mass and drawing free body diagrams.

For mass A: [tex]F_{net}=F_{T_{sys}}=m_Aa_{sys}=30a_{sys}[/tex]

[tex]a_{sys}=\frac{F_{T_{sys}}}{30}[/tex] (1)

For the "big mass" (mass B + mass C):

[tex]F_{net}=F_g-F_{T_{sys}}=50a_{sys}[/tex]

[tex]a_{sys}=\frac{50g-F_{T_{sys}}}{50}[/tex] (2)

Solving for [tex]F_{T_{sys}}=183.75N[/tex] and [tex]a_{sys}=6.125m/s^2[/tex]

Now how can I used this information to find the tension between mass B and C?