Solving a Venturi Device for Height of Mercury Rise

AI Thread Summary
The discussion centers on calculating the height of mercury rise in a Venturi device with diameters of 4mm and 2cm, and air entering at a flow rate of 1200cm^3/m. Initial calculations yielded unreasonably high velocities of 954925m/s and 38197m/s, leading to an incorrect mercury height of around 400000m. The user identified a conversion error in changing cm^3 to m^3, which contributed to the inaccuracies in their results. The next steps involve correctly applying Bernoulli's equation with accurate values to determine the correct height of mercury rise.
laminar
Messages
15
Reaction score
0
A Venturi device has a diameter of 4mm at one end and a diameter of 2cm at the other. Air enters at 1200cm^3/m. Mercury is in the botom of the device. Assuming mercury's density to be 13700kg/m^3, and air's density to be 1.2kg/m^3, find how high the mercury rises. Assume air to be an ideal fluid.

I got ridiculously large numbers for this.

Q=Av

12m^3/s=pi(0.002^2)v

v=954925m/s

This is outrageously fast, and I did the same calculation for the other end and got 38197m/s, using a 1cm radius.

I don't think this is quite right. Are these velocities correct? The next tep is to plug the velocities into Bernoulli's equation:

(Mercury's density)(g)(h)=(0.5)(density of air)(v2^2-v1^2)

And solve for v, but I got around 400000m for the answer. I know it is incorrect.

Am I doing something wrong here?
 
Physics news on Phys.org
I found out that I was converting the cm^3 to m^3 wrong. I calculated the height of the mercury in the tube to be 4.1, and it is wrong according to MasteringPhysics.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top