Solving EM Wave Emission from Cavity at T: Power per Unit Area

phystudent17
Messages
2
Reaction score
0

Homework Statement


Basically, the problem states that a cavity at temperature T is emitting EM waves isotropically in all directions (with frequency distribution of Planck's Law). If the time averaged density is <e>, find the value of d<S>/dw where w is the solid angle and the quantity is the effective poynting vector magnitude per unit solid angle. Hence I am to show the power per unit area that passes in one direction (i.e. into solid angle of 2 pi) through any plane within the cavity is dP/dA= (c/4)<e>/ Note that the unit system is Gaussian. Basically, I am stuck at the first part of the problem.


Homework Equations



Some equations that I know are <S>=c<e>, the total solid angle for a sphere is 4 pi.

The Attempt at a Solution



I have a feeling the solution is really simple but I cannot get into the physics of it. Is d<S>/dw just <S>/ 4pi= (c/4 pi)<e>? But then integrating over a solid angle of 2 pi gives me (c/2)<e> which is off by a factor of 2. And I really don't get the solid angle business. Can someone point me in the right direction? Thanks.
 
Physics news on Phys.org
"But then integrating over a solid angle of 2 pi gives me (c/2)<e> which is off by a factor of 2"

That's because you should be integrating over a solid angle of 4 pi, as you already know!
 
but now i want the power per unit area passing through one direction and that has a solid angle of 2 pi not 4 pi. the qn requires me to show that integrating over the solid angle of 2 pi gives me (c/4)<e>
 
I did misread your question, sorry about that. In any case, the relation |<\vec{S}>|=c<e> holds for plane waves propagating in a given direction. It's not a general relation.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top