KEØM
- 65
- 0
Homework Statement
Knowing that the stress and strain for an isotropic media can be related with the following expressions:
\sigma_{xx} = (\lambda + 2\mu)\varepsilon_{xx} + \lambda\varepsilon_{yy} + \lambda\varepsilon_{zz}
\sigma_{yy} = \lambda\varepsilon_{xx} + (\lambda + 2\mu)\varepsilon_{yy}) + \lambda\varepsilon_{zz}
\sigma_{zz} =\varepsilon_{xx}\lambda+ \lambda\varepsilon_{yy} + (\lambda + 2\mu)\varepsilon_{zz}
Solve this system of equations for the three strain components to derive that:
\varepsilon_{xx} = \frac{2(\lambda + \mu)\sigma_{xx} - \lambda(\sigma_{yy} + \sigma_{zz})}{2\mu(3\lambda + 2\mu)}
\varepsilon_{yy} = \frac{2(\lambda + \mu)\sigma_{yy} - \lambda(\sigma_{xx} + \sigma_{zz})}{2\mu(3\lambda + 2\mu)}
\varepsilon_{zz} = \frac{2(\lambda + \mu)\sigma_{xx} - \lambda(\sigma_{xx} + \sigma_{yy})}{2\mu(3\lambda + 2\mu)}
Homework Equations
\sigma_{xx} = (\lambda + 2\mu)(\varepsilon_{xx}) + \lambda\varepsilon_{yy} + \lambda\varepsilon_{zz}
\sigma_{yy} = \lambda\varepsilon_{xx} + (\lambda + 2\mu)(\varepsilon_{yy}) + \lambda\varepsilon_{zz}
\sigma_{zz} =(\varepsilon_{xx}) + \lambda\varepsilon_{yy} + (\lambda + 2\mu)\varepsilon_{zz}
\sigma_{ij} = \lambda\delta{ij}\varepsilon_{kk} + 2\mu\varepsilon{ij}
Hint: \sigma_{xx} = \sigma_{yy} due to symmetry.
The Attempt at a Solution
Well I put the three equations into matrix and tried to carry out row reduction and I came up with the following result:
<br /> \left[<br /> \begin{array}{c}<br /> \sigma_{xx} \\<br /> \sigma_{yy} \\<br /> \sigma_{zz}<br /> \end{array}<br /> \right]<br /> <br /> =<br /> <br /> <br /> \left[<br /> \begin{array}{ccc}<br /> \lambda + 2\mu & \lambda & \lambda \\<br /> \lambda & \lambda + 2\mu & \lambda \\<br /> \lambda & \lambda & \lambda + 2\mu \\<br /> \end{array}<br /> \right]<br /> \left[<br /> \begin{array}{c}<br /> \varepsilon_{xx} \\<br /> \varepsilon_{yy} \\<br /> \varepsilon_{zz}<br /> \end{array}<br /> \right]<br />
I firstly attempted to remove the terms in the first column and the second and third rows, I did this by multiplying the top row by \frac{\lambda}{\lambda + 2\mu} and subtracting that from the second and third rows which gave me the following matrix:
<br /> <br /> = \left[<br /> \begin{array}{ccc}<br /> \lambda + 2\mu & \lambda & \lambda \\<br /> 0 & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu} & \lambda - \frac{\lambda^2}{\lambda + 2\mu} \\<br /> 0 & \lambda - \frac{\lambda^2}{\lambda + 2\mu} & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}<br /> \end{array}<br /> \right]<br />
In order to get rid of the term in the second column and the third row, I multiplied the second row by \frac{\lambda(\lambda + 2\mu) - \lambda^2}{(\lambda + 2\mu)^2 - \lambda^2} and subtracted that row from the third row. This gave me the following matrix:
<br /> <br /> = \left[<br /> \begin{array}{ccc}<br /> \lambda + 2\mu & \lambda & \lambda \\<br /> 0 & \lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu} & \lambda - \frac{\lambda^2}{\lambda + 2\mu} \\<br /> 0 & 0 & \frac{(\lambda(\lambda + 2\mu) - \lambda^2)^2}{(\lambda + 2\mu)((\lambda + 2\mu)^2 - \lambda^2)} - \left(\lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}\right)<br /> \end{array}<br /> \right]<br />
Therefore I can write my first solution out as:
\sigma_{zz} = \left(\frac{(\lambda(\lambda + 2\mu) - \lambda^2)^2}{(\lambda + 2\mu)((\lambda + 2\mu)^2 - \lambda^2)} - \left(\lambda + 2\mu - \frac{\lambda^2}{\lambda + 2\mu}\right)\right)\varepsilon_{zz}
which doesn't appear to be right. It would be of much help if someone could show me an easier method. Perhaps Kramer's Rule but I am unfamiliar with that method. Any help will be greatly appreciated.
Thank you,
KEØM