Calculating Distance Traveled on a Winding Trajectory From North to South Pole

AI Thread Summary
The discussion revolves around calculating the distance traveled by an airplane flying from the North Pole to the South Pole along a winding trajectory. The trajectory is defined using spherical coordinates, with the z-coordinate representing the vertical descent and the azimuthal angle describing the winding motion. Participants express confusion about how to approach the problem and convert the trajectory into the required integral form. The integration bounds are identified as ranging from 0 to π, but there is uncertainty about how to express the integral correctly. The conversation emphasizes the need to reparameterize the path for a clearer solution.
kitsh
Messages
7
Reaction score
0

Homework Statement


An airplane flies from the North Pole to the South Pole, following a winding trajectory. Place the center of the Earth at the origin of your coordinate system, and align the south-to-north axis of the Earth with your z axis. The pilot’s trajectory can then be described as follows:
1) The plane’s trajectory is confined to a sphere of radius R centered on the origin.
2) The pilot maintains a constant velocity v in the -z direction, thus the z coordinate can be described as z(t)=R-vt
3) The pilot "winds" around the Earth as she travels south, covering a constant ω radians per second in the azimuthal angle ϕ, thus ϕ(t)=ωt

Calculate the total distance traveled by the pilot. What you will find is that time t is not the best IP with which to parametrize this path. You can start with it, certainly … but then get rid of it in terms of a different choice for your IP: θ, from spherical coordinates

Homework Equations


Spherical coordinates are (r, θ, ϕ)
The Answer should be in the form of ∫A√(1+B^2(sin(θ))^n)dθ where A, B and n are either numerical constants or constants in in the terms of R, v and ω

The Attempt at a Solution


I honestly have no idea how I am supposed to approach this question, it is nothing like anything I have seen in this class or any other
 
Physics news on Phys.org
I would start with spherical coordinates. With constant radius, R, x= R cos(\theta)sin(\phi), y= R sin(\theta)sin(\phi), z= R cos(phi). Here we have z= R cos(\phi)= R- vt and \phi= \omega t[/te]x] so z= R cos(\omega t)= R- vt
 
So I converted everything to spherical which helps some and I know the bounds of integration are going to be from 0 to pi and that the integration constant is rdθ but I still can't figure out how to get the integral into the form indicated above.
 
kitsh said:
So I converted everything to spherical which helps some and I know the bounds of integration are going to be from 0 to pi and that the integration constant is rdθ but I still can't figure out how to get the integral into the form indicated above.
Please post your working as far as you get.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top