Spontaneous symmetry breaking in the SM

AlphaNumeric
Messages
289
Reaction score
0
\mathcal{L} = \frac{1}{2}(\partial_{\mu}\underline{\phi}).(\partial^{\mu}\underline{\phi}) + \frac{1}{2}\mu^{2}\underline{\phi}.\underline{\phi} - \frac{\lambda}{4}(\underline{\phi}.\underline{\phi})^{2} + \bar{\psi}(i\gamma . \partial )\phi - g\bar{\psi}(\phi_{1}+i\gamma^{5}\phi_{2})\psi

where \underline{\phi} = \left( \begin{array}{c} \phi_{1} \\ \phi_{2} \end{array} \right)

I've shown this Lagrangian is invariant under \phi_{1} \to \cos \alpha \phi_{1} - \sin \alpha \phi_{2} \phi_{2} \to \sin \alpha \phi_{1} + \cos \alpha \phi_{2} \psi \to \exp\left( -\frac{i \alpha \gamma^{5}}{2} \right)\psi

The question then asks to show that the solution to the classical equations of motion with minimal energy lead to a vacuum which breaks the symmetry spontaneously. Then, to pick a suitable vacuum solution, and use it to show the fermion field acquires a mass proportional to g.

If someone could give me pointers in the right direction I've be very grateful. I've tried mucking about with the equations of motion for the phi's and psi's, but seem to going round in circles. Thanks :smile:
 
Physics news on Phys.org
Hi AlphaNumeric,

Since you are asked to find the classical lowest energy field configuration it makes sense to construct the Hamiltonian for your system. This step is essentially trivial since your Lagrangian is nice and simple in its time derivatives (note that I think you have a typo in the kinetic term for the dirac field, that \phi should be a \psi). I won't spoil it for you, but you will find that some terms in the Hamiltonian should obviously be zero in the lowest energy configuration. Once you set these terms to zero in your classical field equations, everything becomes simple and the solution will pop right out.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top