Statics:Find the Tension in a rope holding a boom

  • Thread starter Thread starter fishturtle1
  • Start date Start date
  • Tags Tags
    Rope Tension
AI Thread Summary
The discussion focuses on calculating the tension in a rope supporting a boom that weighs 2450 N and is attached to a frictionless pivot. The participant attempted to find the tension using the sum of torques but initially used sine functions incorrectly, leading to an erroneous result of 10,200 N. They later questioned the use of cosine for calculating horizontal distances related to torque, emphasizing the need for accurate force application points. Clarifications were provided regarding the importance of determining the correct distances from the pivot to the lines of action for the forces involved. The conversation highlights common mistakes in applying torque calculations in statics problems.
fishturtle1
Messages
393
Reaction score
82

Homework Statement


The boom in the figure below (Figure 1) weighs 2450 N and is attached to a frictionless pivot at its lower end. It is not uniform; the distance of its center of gravity from the pivot is 35.5 % of its length.
Find the tension of the guy wire.
yg.10.60.jpg

Homework Equations


Στ=0
∑F=0
τ=F*Dsin(θ)

The Attempt at a Solution


I made a free body diagram where the boom is the object and i drew three forces acting on it.

The three forces acting on the boom are weight of the boom, weight of the box, and the tension in the rope.

I then tried to use the sum of the torques to find tension:

Στ=0=wboomsin(60°)(.355L) + wboxsin(60°)L - T1sin(30°)L

then rearranged

wboomsin(60°)(.335L) + wboxsin(60°)L = T1sin(30°)L

then i canceled out the L variable, and plugged in and simplified and got this:

T1 = 10,167 N => 10200 N.

This is wrong.
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
 
Last edited:
Physics news on Phys.org
fishturtle1 said:

Homework Statement


The boom in the figure below (Figure 1) weighs 2450 N and is attached to a frictionless pivot at its lower end. It is not uniform; the distance of its center of gravity from the pivot is 35.5 % of its length.
yg.10.60.jpg

Homework Equations


Στ=0
∑F=0
τ=F*Dsin(θ)

The Attempt at a Solution


I made a free body diagram where the boom is the object and i drew three forces acting on it.

The three forces acting on the boom are weight of the boom, weight of the box, and the tension in the rope.

I then tried to use the sum of the torques to find tension:

Στ=0=wboomsin(60°)(.355L) + wboxsin(60°)L - T1sin(30°)L

then rearranged

wboomsin(60°)(.335L) + wboxsin(60°)L = T1sin(30°)L

then i canceled out the L variable, and plugged in and simplified and got this:

T1 = 10,167 N => 10200 N.

This is wrong.
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
Post the entire problem statement.
 
fishturtle1 said:
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
For the torque of a vertical force around the axis you need the horizontal distance from the axis to the line of action of the force.
If L is the hypotenuse and the angle to the horizontal is θ, what is that horizontal distance?
 
haruspex said:
For the torque of a vertical force around the axis you need the horizontal distance from the axis to the line of action of the force.
If L is the hypotenuse and the angle to the horizontal is θ, what is that horizontal distance?
the horizontal distance would be Lcos(θ), but why are we treating L as a hypotenuse?

In my diagram I reoriented the boom horizontal and then i did sinθ to find the Fy of each force and then calculated the torques that way.

I am confused when you say "you need a horizontal distance from the axis of the line of action of the force"? So does this mean I need to find the distance from the axis of rotation to the line where the force is being applied?
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...

Similar threads

Replies
7
Views
5K
Replies
22
Views
4K
Replies
25
Views
5K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Back
Top