Statics:Find the Tension in a rope holding a boom

  • Thread starter Thread starter fishturtle1
  • Start date Start date
  • Tags Tags
    Rope Tension
AI Thread Summary
The discussion focuses on calculating the tension in a rope supporting a boom that weighs 2450 N and is attached to a frictionless pivot. The participant attempted to find the tension using the sum of torques but initially used sine functions incorrectly, leading to an erroneous result of 10,200 N. They later questioned the use of cosine for calculating horizontal distances related to torque, emphasizing the need for accurate force application points. Clarifications were provided regarding the importance of determining the correct distances from the pivot to the lines of action for the forces involved. The conversation highlights common mistakes in applying torque calculations in statics problems.
fishturtle1
Messages
393
Reaction score
82

Homework Statement


The boom in the figure below (Figure 1) weighs 2450 N and is attached to a frictionless pivot at its lower end. It is not uniform; the distance of its center of gravity from the pivot is 35.5 % of its length.
Find the tension of the guy wire.
yg.10.60.jpg

Homework Equations


Στ=0
∑F=0
τ=F*Dsin(θ)

The Attempt at a Solution


I made a free body diagram where the boom is the object and i drew three forces acting on it.

The three forces acting on the boom are weight of the boom, weight of the box, and the tension in the rope.

I then tried to use the sum of the torques to find tension:

Στ=0=wboomsin(60°)(.355L) + wboxsin(60°)L - T1sin(30°)L

then rearranged

wboomsin(60°)(.335L) + wboxsin(60°)L = T1sin(30°)L

then i canceled out the L variable, and plugged in and simplified and got this:

T1 = 10,167 N => 10200 N.

This is wrong.
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
 
Last edited:
Physics news on Phys.org
fishturtle1 said:

Homework Statement


The boom in the figure below (Figure 1) weighs 2450 N and is attached to a frictionless pivot at its lower end. It is not uniform; the distance of its center of gravity from the pivot is 35.5 % of its length.
yg.10.60.jpg

Homework Equations


Στ=0
∑F=0
τ=F*Dsin(θ)

The Attempt at a Solution


I made a free body diagram where the boom is the object and i drew three forces acting on it.

The three forces acting on the boom are weight of the boom, weight of the box, and the tension in the rope.

I then tried to use the sum of the torques to find tension:

Στ=0=wboomsin(60°)(.355L) + wboxsin(60°)L - T1sin(30°)L

then rearranged

wboomsin(60°)(.335L) + wboxsin(60°)L = T1sin(30°)L

then i canceled out the L variable, and plugged in and simplified and got this:

T1 = 10,167 N => 10200 N.

This is wrong.
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
Post the entire problem statement.
 
fishturtle1 said:
I peaked at the yahoo answer and they used cos(θ) instead of sin(θ) which does not make sense to make because then the force calculated would move the boom linearly rather than creating a torque.
For the torque of a vertical force around the axis you need the horizontal distance from the axis to the line of action of the force.
If L is the hypotenuse and the angle to the horizontal is θ, what is that horizontal distance?
 
haruspex said:
For the torque of a vertical force around the axis you need the horizontal distance from the axis to the line of action of the force.
If L is the hypotenuse and the angle to the horizontal is θ, what is that horizontal distance?
the horizontal distance would be Lcos(θ), but why are we treating L as a hypotenuse?

In my diagram I reoriented the boom horizontal and then i did sinθ to find the Fy of each force and then calculated the torques that way.

I am confused when you say "you need a horizontal distance from the axis of the line of action of the force"? So does this mean I need to find the distance from the axis of rotation to the line where the force is being applied?
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...

Similar threads

Replies
7
Views
5K
Replies
22
Views
4K
Replies
25
Views
5K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
11
Views
2K
Back
Top