The physical pendulum - distance, period, and angular frequency

AI Thread Summary
The discussion focuses on solving a physics problem involving a physical pendulum, specifically a wedge-shaped disk. Participants calculated the center of mass distance from the tip of the wedge as 1.21 m and determined the period of oscillation to be 2.41 seconds. There is uncertainty regarding the use of the parallel axis theorem and the calculation of the moment of inertia for maximizing frequency. To find the optimal pivot point distance for maximum frequency, the approach involves using the frequency equation and taking its derivative. The conversation highlights the need for clarity on the moment of inertia in this context.
Hyperfluxe
Messages
35
Reaction score
0

Homework Statement


The physical pendulum shown on your paper is a 27.0 kg wedge of a circular disk of uniform density with radius, R=1.87 m and opening angle β=0.847 radians. The pivot point of the pendulum can be moved along the center line of the wedge as shown on your paper.

http://i.imgur.com/TqMkX.gif

a) Find the distance of the center of mass from the tip of the wedge.

b) If this physical pendulum is supended by a pivot at its tip, and oscillates with a small amplitude, find the period of oscilation.

c) Find the distance from the tip at which the pivot point should be placed to maximize the frequency for the pendulum.

d) Find the maximum angular frequency for this pendulum
HINT: The `angular frequency' is the name often used for the parameter `w' (omega) in the general equation for Simple Harmonic Motion: i.e., Acos(`w't+phi). Note that it is also the angular velocity for the circular motion whose projection is SHM. Since you have already calculated the distance from the pivot to the CM and also Icm, you can now calculate the maximum value of `w'.

Variables:
m=27.0kg
R=1.87m
A=0.847m


Homework Equations


Xcm=(4/3)(R)(sin(0.5A)/A)

T=2pisqrt(I/mgXcm)

D=Acos(wt+phi)





The Attempt at a Solution


a) Xcm=(4/3)(R)(sin(0.5A)/A)=1.21m (correct)

b) T=2pisqrt(I/mgXcm)=2.41s (correct)
A friend told me to use the parallel axis theorem but I didn't use it and still got the answer right, do I have to use it here?

c) I have no clue...I'm guessing I use D=Acos(wt+phi), and to maximize the whole cos term will be equal to 1, so D=A? It's clearly wrong but I don't know where to go from here.

d) Once I find the distance in part c, w=sqrt(mgd/I) and that's it?
 
Physics news on Phys.org
Anyone? For part c) I realize that we have to use the equation of frequency (1/T), then find the derivative and set it equal to zero to find the distance which gives the maximum frequency, but what is the moment of inertia (Icm) in this case?
 
Hyperfluxe said:
Anyone? For part c) I realize that we have to use the equation of frequency (1/T), then find the derivative and set it equal to zero to find the distance which gives the maximum frequency, but what is the moment of inertia (Icm) in this case?

The moment of inertia of a single particle (which we can assume in this case, as the mass of the string is negligible) is equal to the mass of the particle multipled by the square of the moment arm, or the distance from the particle to the rotating axis.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top