The Sturm-Liouville Theory

  • Thread starter Thread starter Void123
  • Start date Start date
  • Tags Tags
    Theory
Void123
Messages
138
Reaction score
0

Homework Statement



Find the weight functions for Trigg's, Legendre's, Legendre's Associated, and Bessel's equations.


Homework Equations



Not sure.


The Attempt at a Solution



I know that the weight function, \omega(x), is real and correlates to the scalar product of functions.

Thanks.
 
Physics news on Phys.org
the weight function determines how functions are othogonal & magnitudes by defining the inner product:

<f(x),g(x)> = \int dx.g(x)f(x)w(x)

if i remember correctly, by writing teh DE in the correct SL form, the weight functio nshoudl be reasonably apparent
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top