The symbol t in the capacitor discharge formula q= (q0e)^(–t/RC)

AI Thread Summary
The symbol t in the capacitor discharge formula q = q0e^(-t/RC) represents clock time, starting at t=0 when the capacitor begins discharging. The time constant τ, defined as τ = RC, is crucial for understanding the discharge process, as it has dimensions of time. The equation can be rewritten as q(t) = q0e^(-t/τ) to incorporate this time constant. Each time constant τ results in the charge decreasing to approximately 37% of its initial value. This understanding aids in visualizing the exponential decay of charge in capacitors over time.
hidemi
Messages
206
Reaction score
36
Homework Statement
In the capacitor discharge formula q= (q0e)^(–t/RC) the symbol t represents:
A)the time constant
B)the time it takes for C to lose the fraction 1/e of its initial charge
C)the time it takes for C to lose the fraction (1 – 1/e) of its initial charge
D)the time it takes for C to lose essentially all of its initial charge
E)none of the above
The answer is E.
Relevant Equations
q= (q0e)^(–t/RC)
If none of the above is correct, what is a good definition of the symbol t (time)?
 
Physics news on Phys.org
Clock time. It's the same ##t## as in ##x=v_0t+\frac{1}{2}at^2##. Here the imaginary clock starts ticking at ##t=0## when the capacitor starts discharging.
 
  • Like
Likes rsk and hidemi
kuruman said:
Clock time. It's the same ##t## as in ##x=v_0t+\frac{1}{2}at^2##. Here the imaginary clock starts ticking at ##t=0## when the capacitor starts discharging.
Ok I see.
Another question is that why we need to divide the time by the time constant (tao)?
 
hidemi said:
Ok I see.
Another question is that why we need to divide the time by the time constant (tao)?
As you know, the charge on the capacitor at any time ##t## is given by ##q(t)=q_0e^{-\frac{t}{RC}}.## The product ##RC## has dimensions of time. So we define time constant ##\tau=RC## and substitute in the equation to get ##q(t)=q_0e^{-\frac{t}{\tau}}.##
 
kuruman said:
As you know, the charge on the capacitor at any time ##t## is given by ##q(t)=q_0e^{-\frac{t}{RC}}.## The product ##RC## has dimensions of time. So we define time constant ##\tau=RC## and substitute in the equation to get ##q(t)=q_0e^{-\frac{t}{\tau}}.##
Ok I see. Thank you.
 
  • Like
Likes berkeman and kuruman
Another helpful mental picture is to understand that for each time constant ##\tau## the level of charge goes down to ##\frac{1}{e}## of its initial level Q. That is about 37% left after each time constant. So after one time constant Q goes to Q*0.37Q, after 2 time constants, Q has gone down to Q*(0.37)^2, and so on.

1613405786394.png

https://www.eecs.tufts.edu/~dsculley/tutorial/rc/dischargeCurve.jpg
 
  • Like
Likes hidemi and Delta2
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top