Time Evolution of Spin in a Magnetic Field

JoseGG
Messages
2
Reaction score
1

Homework Statement


The Hamiltonian of a spin 1/2 particle is given by:
$$H=g\overrightarrow { S }\cdot \overrightarrow { B } $$
where ##\overrightarrow { S }=\hbar \overrightarrow{\sigma }/2## is the spin operator and ##\overrightarrow { B }## is an external magnetic field.
1. Determine ##\dot { \overrightarrow{ S } } ## as a function of S⃗ and B⃗ .
2. Consider now the particular case in which B⃗ = ##\hat{z}##B is oriented along ##\hat{z}##. Calculate the eigenstates and eigenvalues of ##\dot{S_y}##.

3. For t = 0 the system is in one of the eigenstates of ##\dot{S_y}## . Calculate the time evolution of the spin state and of the expectation value of the energy.


2. Homework Equations

1. So we are working with Heisenberg, equaiton of motion. They ask what is the rate of change of Spin operator with time. We are dealing with,
$$ \frac { dS }{ dt } =\frac { 1 }{ i\hbar } \left[ \overrightarrow { S } ,H \right] $$

2. ?

3. I think the timeevolution operator on the state

$$e^{-iHt/\hbar}\left |s \right> $$

The Attempt at a Solution


1. I interpet the ##\overrightarrow { S}## in the Heisenberg equation of motion as, a vector of [Sx,Sy,Sz], I don't know how to work with the Heisenberg equation to find the dirrevative.

2. Use the found ##\dot{\overrightarrow {S}}## vector and pick ##\dot{S_y}##, solve it as an eigenvalue problem with, spin up, with an eigen value of one.

I am not able to move forward without the first task. Any help would be nice. It is possible my attempt are not correct.
 
Physics news on Phys.org
I ofcourse had to use the commutation relations, for S got it figured out. $$\dot{S}$$ is then just a vector.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top