Time for Cylinder to Travel Roll Down Incline

AI Thread Summary
The discussion revolves around calculating the time it takes for a cylinder to roll down an incline. The user initially attempted to use torque to solve the problem but made errors in their calculations and understanding of forces acting on the cylinder. Key points include the realization that the gravitational force component, mg sin(θ), initiates motion, while friction provides the necessary torque for rolling without slipping. A suggestion is made to apply conservation of energy to find the time taken, emphasizing that the mass of the cylinder does not affect the outcome. The conversation highlights the importance of correctly analyzing forces and using appropriate physics principles in such problems.
seichan
Messages
31
Reaction score
0
Homework Statement
A cylinder (R= 0.11 m, I (center of mass)= 0.015427 kg*m2, and M= 1.48 kg) starts from rest and rolls without slipping down a plane with an angle of inclination of Theta= 26.3 deg. Find the time it takes it to travel 1.51 m along the incline.The attempt at a solution
Alright, so I tried to deal with this one using torque. The torque is due to the plane's reaction to the weight of the cylinder, so...
G=m*g*r*sin(theta)=1.48*9.81*.11*sin(26.3)=.707614820587 N
G=I*a
a=G/I
a=.708/.015847=44.6529198326 rad/s^2

Now, calculate how far in radians the distance traveled is...
(2pi*1.51)/.11= 86.2509983076 rad

So, using the position equation...
s=.5at^2
t=sqrt(2s/a)
=sqrt(2*86.2509983076/44.6529198326)
=1.96549585305 s

Yeah... That's wrong... Any clue where I'm wrong? Thanks for any help you guys provide- you're all really great =)
 
Last edited:
Physics news on Phys.org
The distance traveled in radians is 2*pi*d/r, isn't it? Isn't that 2*pi*1.51m/0.11m? How did the mass get into that equation?
 
Oops- yeah, that was a mistake I made when I was typing that into here. The other way still comes out wrong.
 
if the cylinder isn't moving there is a friction force mgsin(theta) at a distance r that will produce a torque, but if the cylinder has a linear accelaration a, the magnitude of this force is mgsin(theta) - ma
 
The error in your analysis is that you are considering that the normal force causes torque. The fact is, the gravitational force has two components. The normal force is the reaction to one of them i.e. mg cos(θ).

However, all the three forces have their lever arm as 0. [the gravitational forces act at the center and hence r = 0, and the normal force is parallel to the radial line and hence θ = 0]. This diagram may help you:

http://img369.imageshack.us/img369/5736/torquefbdqd0.jpg

When the cylinder is acted upon by the gravitational force component, mg sin(θ), it starts to move. Just as it starts to move, frictional force acts upon it. This force has a lever arm 'r' and this is what causes the torque. Since this is a case of pure rolling, you can use the formulas \alpha = ar, v = \omega r and s = \theta r without hesitation.

This is also a case of constant acceleration [both, linear and angular]. One suggestion i could give here is to use conservation of energy. What is the GP energy of the cylinder at a particular height? How much does this decrease when it rolls down? This difference of energy will be provided by a change in R.KE and L.KE. Using those formulae, you can compute the angular velocity when the cylinder has rolled down. Once you do that, simply use the formulae for constant angular acceleration to find out the time.

P.S: Try doing it without using any of the values provided, but putting in only variables in their place. You'll find that the time taken depends only on the shape, inclination of the plane and distance traveled i.e. mass doesn't come into the equation at all :D
 
Last edited by a moderator:
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top