Understanding Vector Products and Properties: Sorting Fact from Fiction

AI Thread Summary
The discussion centers on the truth of several statements regarding vector products and their properties. Statements B and D are confirmed as true, indicating that a vector's x-component can be positive, negative, or zero, and that the dot product of perpendicular vectors equals zero. Statements A, C, E, and F are deemed false; the magnitude of a vector cannot be negative, and the scalar product can indeed be negative depending on the angle between the vectors. The confusion primarily arises from the interpretation of scalar products and the relationship between the vectors involved. Clarity on these concepts is essential for understanding vector mathematics.
x^2
Messages
19
Reaction score
1

Homework Statement



Which of the following are true?
A) A vect. prod. C=C vect. prod. A
B) The x-component of a vector can be +, -, or zero
C) If A=BxC and C=64i, then Ax=0
D) If A perp to B, then B dot A =0
E) The magnitude of a vector is sometimes negative.
F) The scalar (or dot) product of two vectors can be +, -, or zero.


Homework Equations



BxC = BC*cos(theta) where theta = angle between vectors

The Attempt at a Solution


Below are my attempts at proving or disproving each statements.

A) False: Using the right hand rule, the direction of the resulting product will be inverted when comparing AxC and CxA
B) True: A vector could cover horizontal distance to the right (positive), to the left (negative), or be a vertical vector with an x component of zero.
C) False: 64i could potentially result in an answer where Ax = 64i
D) True: BxA = BAcos(90) = BA*0 = 0
E) False: A magnitude is the absolute value of a vector and therefore can never be negative.
F) False: A scalar product must always be positive as all scalars are positive--they would be the absolute value of a vector.

I tried answering B & D as true and the rest false but this was not correct. I am not sure which statements I am confused on. I'm fairly confident of my answers to A, B, D, and E while a little less sure on C and F.

Thanks,
x^2
 
Physics news on Phys.org
C)Since A=BXC. A is perpendicular to B and C. Since C = 64i is along x axis, Ax is zero.
F) A.B = ABcos(theta). ANd cos(theta) can be +, - or zero.
 
To emphasize more about F)

define 2 vectors A = (-1, 1) and B = (1, -1)

A \cdot B = -1 - 1 = -2

Certainly negative.
 
Thanks for the replies! C definitely makes sense when using the right hand rule. For some reason I was still relating Ci to Ax without thinking that they were perpendicular. As for F I see what they are asking for--I guess I was thinking that scalar had to mean magnitude but in actuality they just meant dot product.

Thanks for the help,

x^2
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top