Use integration to find the total force on a point HELP

AI Thread Summary
A uniformly distributed charge Q along a rod exerts a force on another charge q placed at a distance D. The force on q due to a small segment of the rod is expressed as dF = (kqQ/2Lr^2)dy, where r is the distance from the segment to charge q. The discussion highlights the importance of considering only the x-component of the force, as the y-components cancel out due to symmetry. The correct approach involves integrating the x-component of the force, leading to the integral F = (kqQD/2L)∫(D^2 + y^2)^(-3/2) dy from -L to L. Participants in the discussion seek clarification on the integration process and confirm their calculations.
lmlgrey
Messages
18
Reaction score
0
http://capa.mcgill.ca/res/mcgill/dcmcgill/oldproblems/newerlib/Graphics/Gtype51/prob19a.gif[/URL]

1. A charge Q = 8.10 ×10-4 C is distributed uniformly along a rod of length 2L, extending from y = -11.4 cm to y = +11.4 cm, as shown in the diagram 'on your assignment above. A charge q = 1.80 ×10-6 C, and the same sign as Q, is placed at (D,0), where D = 17.5 cm.
Use integration to compute the total force on q in the x-direction




It is already proven that :
The magnitude of the force on charge q due to the small segment dy is
dF=(kqQ/2Lr2)dy.




3. Given what's already proven that for a small dy:
dF = (kqQ/2Lr2)dy

so i integrated both sides and i got:
∫dF = k*q*Q / 2L ∫ 1/r^2 dy

since r^2 = D^2+y^2

therefore the function becomes:
∫dF = k*q*Q / 2L ∫ 1/D^2+y^2 dy

now what should i do next? and the equation i derived, was it right at the first place?


THANKS!
 
Last edited by a moderator:
Physics news on Phys.org
lmlgrey said:
http://capa.mcgill.ca/res/mcgill/dcmcgill/oldproblems/newerlib/Graphics/Gtype51/prob19a.gif[/URL]

1. A charge Q = 8.10 ×10-4 C is distributed uniformly along a rod of length 2L, extending from y = -11.4 cm to y = +11.4 cm, as shown in the diagram 'on your assignment above. A charge q = 1.80 ×10-6 C, and the same sign as Q, is placed at (D,0), where D = 17.5 cm.
Use integration to compute the total force on q in the x-direction




It is already proven that :
The magnitude of the force on charge q due to the small segment dy is
dF=(kqQ/2Lr2)dy.


That may be the magnitude of the force. But what is the magnitude of the x component of that force? (You can see by the symmetry, that the y components all sum to 0 so the integral of the x component gives you the total force).

AM
 
Last edited by a moderator:
oh, i see...
so now since only the x-component is considered then
cos theta = D/r
and the function becomes:
dF=(kqQ/2Lr^2)dy * D/ r ... is that correct?

then further integrating the above gives:

F= k*q*Q*D^2/2L* ∫1/(D^2+y^2)^-2/3 8 dy? -- did i do this step correct??
 
lmlgrey said:
oh, i see...
so now since only the x-component is considered then
cos theta = D/r
and the function becomes:
dF=(kqQ/2Lr^2)dy * D/ r ... is that correct?

then further integrating the above gives:

F= k*q*Q*D^2/2L* ∫1/(D^2+y^2)^-2/3 8 dy? -- did i do this step correct??

Not quite.

F = \frac{kqQD}{2L}\int_{-L}^{L}\frac{1}{r^3} dy = \frac{kqQD}{2L}\int_{-L}^{L}\frac{1}{(\sqrt{D^2 + y^2})^3} dy =\frac{kqQD}{2L}\int_{-L}^{L}(D^2 + y^2)^{-\frac{3}{2}}dy

Good luck working out that integral

AM
 
thanks, i solved it :)
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top