Use Poynting's Theorem to show E and B fields are out of phase

freesnow
Messages
10
Reaction score
0

Homework Statement


In a Fabry-perot interferometer, light is reflected back and forth between 2 highly reflecting parallel mirrors, with a nonconducting medium inside. The waves of magnetic and electric field are 90o out of phase, unlike the case of a wave in free space where they in phase. Develop an argument using Poynting's theorem for why this should be so.


Homework Equations



The Attempt at a Solution


I've thought of using E to calculate H and then say that they're out of phase, but then this method isn't based on Poynting's theorem.
Then I've thought of using the eq.:
E = E0exp((-kapper)z+i(kz-wt))
B = B0exp((-kapper)z+i(kz-wt+theta))
to calculate the Poynting vector, S = 1/mu * (E x B), then somehow show that theta is 90o, but then I don't really know how to do it.
 
Physics news on Phys.org
I was under the impression that Poynting's theorem was the law of conservation of electromagnetic energy,
\vec{J}\cdot\vec{E} + \frac{1}{2}\frac{\partial}{\partial t}\left(\epsilon_0 E^2 + \frac{1}{\mu_0}B^2\right) + \frac{1}{\mu_0}\vec{\nabla}\cdot(\vec{E}\times\vec{B}) = 0

Does that give you any ideas?
 
Thanks. I just realized that I was in the wrong direction from the start, I've just now finished the argument using the law of conservation of electromagnetic energy instead.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top