Van der waal gas in isothermal free expansion

mewmew
Messages
113
Reaction score
0

Homework Statement


A gas obeys the Van Der Waal equation of state. The gas undergoes a free expansion from volume Vi to Vf at a constant temperature T. Find the change in entropy of the gas.

Homework Equations


du=Tds-Pdv+mdn

The Attempt at a Solution


I can solve the problem assuming du= 0 but this shouldn't be right. I can't seem to find out how to find out how much heat enters to keep the gas at a constant temperature. Everything shows that for a free expansion q=0, but here this is not the case.
 
Last edited:
Physics news on Phys.org
mewmew said:

Homework Statement


A gas obeys the Van Der Waal equation of state. The gas undergoes a free expansion from volume Vi to Vf at a constant temperature T. Find the change in entropy of the gas.


Homework Equations


du=Tds-Pdv+mdn

The Attempt at a Solution


I can solve the problem assuming du= 0 but this shouldn't be right. I can't seem to find out how to find out how much heat enters to keep the gas at a constant temperature. Everything shows that for a free expansion q=0, but here this is not the case.

Take a look at this

http://www.physics.rutgers.edu/ugrad/351/Lecture 15.ppt

This does not do your problem exactly, but it does give a derivation of the vdW energy as an additional term -N²a/V added to the ideal gas energy. It uses that result for a calculation of the change in temperature in a free expansion of a vdW gas from an initial volume to a final volume where V is so large that the addition term is neglected. If seems to me this could be easily modified to keep the additional term for any final volume. So you should be able to express a differential change in temperature in terms of a differential change in volume and relate that to the amount of heat needed to prevent that change in temperature and turn it into an isothermal process.

There is an equation for S in terms of T and V that may be just what you are looking for. If indeed S is a state variable, then the equation for S should be valid. Here is another site that seems to reach the same copnclusion. The difference in entropies at T2,V2 and T1,V1 is given as depending only on the initial and final states.

http://theory.phy.umist.ac.uk/~judith/stat_therm/node51.html
 
Last edited by a moderator:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top