Wave Superposition - Complex Exponential

djfermion
Messages
6
Reaction score
0
Hi guys, I lurk here often for general advice, but now I need help with a specific concept.

Ok, so I started a classical and quantum waves class this semester. We are beginning with classical waves and using Vibrations and Waves by A P French as the text. So in the second chapter he discusses wave superposition and describing the motion of two waves added together with a single equation.

In the book, he explains most things geometrical, using the complex vector and complex exponential notation for the wave. He draws both waves and uses law of sines and law of cosines to determine the combined amplitude/frequency/phase angle.

One of the homework problems is then: Express z=sinwt + coswt in the form z=Re[Ae^i(wt+a)]

I was able to accomplish this geometrically with little difficulty and correctly got the answer to be A=root 2 and a=-pi/4. However, my professor said that I should not necessarily rely on the geometry and should be able to get the answer mathematically using the complex exponential form.

I have tried it this way and do not really understand how to go about it. Do I represent sinwt as -iAe^i(wt+a) or possibly as Ae^i(pi/2-wt-a).

Honestly, that particular problem is not that important. I just want to gain insight on how to find the superposition of waves by manipulating different complex exponentials.
 
Physics news on Phys.org
Ok, so after sitting for a second and reconsidering what my professor had said, I have made progress (half way there!). My professor had said the best way to do them is treat the complex exponentials as vectors and add components as you normally would. So that's what I did and I figured out the amplitude:

z=sinwt+coswt
z=Re[-ie^wt+e^wt]

Let the stuff in the bracket equal Ae^i(wt+a) then,

Ae^i(wt+a)=-ie^wt+e^wt
Ae^i(wt+a)=(-icoswt+sinwt)+(coswt+isinwt)
Ae^i(wt+a)=(sinwt+coswt)+i(sinwt-coswt)

A=root(Re^2+Im^2)
A=root[(sinwt+coswt)^2+i(sinwt-coswt)^2]
A=root(2)

That is indeed what the amplitude should be. Now I just need the phase angle, which seems like it is also so close.
 
Well I figured it out. If I just expand the left side and equate the real and imaginary parts then I can solve for alpha.

Even though I didn't get any help, this served as a good way to exercise my brain and figure it out for myself, so thank you physicsforum and I'm sure you will see me again soon.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top