Domnu
- 176
- 0
Problem
Describe the evolution in time of \phi_1 = A \sin \omega t \cos k(x+ct).
Attempt at Solution
We have that
\partial^2 \phi_1 / \partial x^2 = -Ak^2 \sin \omega t \cos k(x+ct)
\partial \phi_1 / \partial t = A \sin \omega t (-kc \cdot \sin k(x+ct)) + A \omega \cos \omega t \cos k(x+ct)
Now, by Schroedinger's Equation,
-h^2/2m \cdot \partial^2\phi_1 / \partial x^2 = i \hbar \cdot \partial \phi_1 / \partial
So, substituting, we have
\hbar^2 / 2m \cdot Ak^2 \sin \omega t \cos k(x+ct) = ihA \sin \omega t \cdot kc \sin k(x+ct) - i\hbar A \omega \cos \omega t \cos k(x+ct)
\iff \hbar^2/2m \cdot k^2 \cdot \sin \omega t = i \hbar \sin \omega t \tan k(x+ct) - i \hbar \omega \cos \omega t
\iff \hbar^2/2m \cdot k^2 = i\hbar \tan k(x+ct) - i \hbar \omega \cot \omega t
\iff \hbar k^2 = i \cdot 2m (\tan \k(x+ct) - \omega \cot \omega t)
Is this it? What am I to do now?
Describe the evolution in time of \phi_1 = A \sin \omega t \cos k(x+ct).
Attempt at Solution
We have that
\partial^2 \phi_1 / \partial x^2 = -Ak^2 \sin \omega t \cos k(x+ct)
\partial \phi_1 / \partial t = A \sin \omega t (-kc \cdot \sin k(x+ct)) + A \omega \cos \omega t \cos k(x+ct)
Now, by Schroedinger's Equation,
-h^2/2m \cdot \partial^2\phi_1 / \partial x^2 = i \hbar \cdot \partial \phi_1 / \partial
So, substituting, we have
\hbar^2 / 2m \cdot Ak^2 \sin \omega t \cos k(x+ct) = ihA \sin \omega t \cdot kc \sin k(x+ct) - i\hbar A \omega \cos \omega t \cos k(x+ct)
\iff \hbar^2/2m \cdot k^2 \cdot \sin \omega t = i \hbar \sin \omega t \tan k(x+ct) - i \hbar \omega \cos \omega t
\iff \hbar^2/2m \cdot k^2 = i\hbar \tan k(x+ct) - i \hbar \omega \cot \omega t
\iff \hbar k^2 = i \cdot 2m (\tan \k(x+ct) - \omega \cot \omega t)
Is this it? What am I to do now?