What Is the Linear Acceleration of the Center of Mass of Link OA?

AI Thread Summary
The discussion focuses on determining the linear acceleration of the center of mass of link OA, given that the angular velocity (omegaOA) is constant. The user expresses confusion about the role of forces at points A and O, questioning how these affect the motion of OA. It is clarified that while point O is fixed and the rotation rate of OA is constant, this does not imply that the linear acceleration of the center of mass is zero; rather, it has a tangential acceleration of zero. The distinction between total linear acceleration and the components of tangential and radial acceleration is emphasized. The conversation highlights the complexities of analyzing forces and torques in rigid body dynamics.
Ian Blankenship
Messages
5
Reaction score
1

Homework Statement


"Represent (linear) acceleration of center of mass of link OA in terms of variables shown." OmegaOA is given to be some constant value, I have assigned it 'omegaOA'.
dynamicscompassignment2.PNG

Homework Equations


Already derived equations to previous parts of the problem, fairly certain these are correct. Relative variables are neglected, since this is a single body problem. 'a' is linear acceleration, alpha is angular acceleration.
omegaAB = (omegaOA*b*cos(theta))/sqrt(d^2 - (b*sin(theta) + h)^2)
alphaOA = 0
alphaAB = [-(omegaOA^2)*b*sin(theta) - (omegaAB^2)*(b*sin(theta)+h)]/sqrt(d^2 + (b*sin(theta) + h)^2)
alphaOA = (a/r)

The Attempt at a Solution


If the weight (mg) of the rod was the only force acting on the rod, the problem is very simple.

I*alpha = torque where I = (1/12)*m*length^2
Mass cancels and the problem is easy to solve. However, I am guessing there are force vectors at A that need to be taken into account. Any help would be appreciated.
 

Attachments

  • dynamicsdiagram.PNG
    dynamicsdiagram.PNG
    15.2 KB · Views: 509
Physics news on Phys.org
haruspex said:
If the angular velocity of OA is fixed, and point O is fixed, how does anything to the right of A affect the movement of OA? Are you sure you have stated the question correctly?
And why did you mark the previous thread https://www.physicsforums.com/threads/acceleration-of-center-of-mass.912120/ as solved, then open a new one for the same question?
Sorry about the repost, I had stated the problem poorly the first time, so I figured it would save the time of those replying to make a more precise and accurate post of the question.
And the 'relevant equations' that I have listed are just there because I'm trying to give as much info as possible. And if the reaction forces at A are worked around, there are still support forces at O (according to my analysis, could be wrong). I.e. a simple moment analysis appears to lead to a confusing situation, with either forces at A or O coming up
 
Ian Blankenship said:
if the reaction forces at A are worked around,
Why do you care about forces at all? Point O is fixed, the rotation rate of OA is fixed. That tells you everything about the motion of all points on OA.
 
That makes sense..so the linear acceleration of the center of mass would be zero? I would assume that all points along the link OA would have an acceleration of zero.
 
Ian Blankenship said:
so the linear acceleration of the center of mass would be zero?
No. It has a tangential acceleration of zero.
Linear acceleration of a point is its total acceleration, tangential plus radial (vectorially). Linear acceleration of a rigid body is the linear acceleration of its mass centre.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top