Electric Flow through a Cylinder Without Bases

AI Thread Summary
The discussion focuses on calculating the electric flux through a cylindrical shape without bases, given its height of 2h and radius R, with a charge Q located at one point. The final answer for the electric flow is derived as Q/[epsilon0*sqrt(1+R^2/h^2)]. Participants suggest using Gauss' Law to find the total flux and then subtracting the flux through the cylinder's flat ends. A participant encounters difficulties with their calculations, leading to a discrepancy between their results and the expected answer. The conversation emphasizes the importance of accurately accounting for the geometry and applying Gauss' Law correctly to resolve the electric flow calculation.
ori
Messages
28
Reaction score
0
http://t2.technion.ac.il/~snoop/Q.gif
Q is at one point
R is the radius of this cylinder, it's height is 2h
the cylinder is without the bases.
how can i calculate the electric flow through it?
the final answer is Q/[epsilon0*sqrt(1+R^2/h^2)]
 
Last edited by a moderator:
Physics news on Phys.org
Why don't you try calculating the flux through the flat top and bottom of the cylinder? Then you could subtract it from the total flux given by Gauss' Law.
 
ori said:
http://t2.technion.ac.il/~snoop/Q.gif
Q is at one point
R is the radius of this cylinder, it's height is 2h
the cylinder is without the bases.
how can i calculate the electric flow through it?
the final answer is Q/[epsilon0*sqrt(1+R^2/h^2)]
where is my mistake:

we take ball with radius sqrt(R^2+h^2) and look on the rounded bases: the area of this ball inside the cylinder.

flow through bases / flow through all ball = bases area / all ball area

gaus: all ball flow is Q/epsilon0

all ball area is 4pi(R^2+h^2)

base area = circumference of projection of the base on y=2h * height of base
=(2pi*R)*[sqrt(R^2+h^2)-h]

2 bases area = base area * 2 = 4pi*R[sqrt(R^2+h^2)-h]

flow through bases=bases area*flow through all ball / all ball area=
= 4pi(R^2+h^2)Q/(epsilon0 4pi*R[sqrt(R^2+h^2)-h])=
Q(R^2+h^2)/(epsilon0 *R[sqrt(R^2+h^2)-h])

now that's not like that right answer, coz we can assign r=1 h=1
my answer qives 2/(sqrt(2)-1) * Q/epsilon0 = 2(1+sqrt(2)) * Q/epsilon0
right answer gives 1/sqrt(2) * Q/epsilon0
 
Last edited by a moderator:
Tide said:
Why don't you try calculating the flux through the flat top and bottom of the cylinder? Then you could subtract it from the total flux given by Gauss' Law.
we get too hard integral at that case:
S r^2/(r^2+h^2)^(3/2) dr
or something like that
 
Last edited:
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top