Boundary conditions Definition and 364 Threads

  1. abilolado

    A Free boundary conditions on vibrating rectangular membranes

    I've been trying to come up with wave equations to describe the motion on vibrating rectangular (more specifically, square) membranes. However, most paper I find assume fixed edges. What are the boundary conditions I need to apply to the 2D wave equations in order to have an free boundary in a...
  2. BiGyElLoWhAt

    I A question about boundary conditions in Green's functions

    I have a couple homework questions, and I'm getting caught up in boundary applications. For the first one, I have y'' - 4y' + 3y = f(x) and I need to find the Green's function. I also have the boundary conditions y(x)=y'(0)=0. Is this possible? Wouldn't y(x)=0 be of the form of a solution...
  3. WORLDOKO

    Boundary conditions of that beam.

    Hi all! I have to calculate the natural frequency of the system. Any idea of boundary conditions of this case? There is beam supported by two springs on the left side.
  4. M

    I Infinite square well solution - periodic boundary conditions

    If we have an infinite square well, I can follow the usual solution in Griffiths but I now want to impose periodic boundary conditions. I have \psi(x) = A\sin(kx) + B\cos(kx) with boundary conditions \psi(x) = \psi(x+L) In the fixed boundary case, we had \psi(0) = 0 which meant B=0 and...
  5. ShayanJ

    A Neumann boundary conditions in calculus of variations

    In calculus of variations, extremizing functionals is usually done with Dirichlet boundary conditions. But how will the calculations go on if Neumann boundary conditions are given? Can someone give a reference where this is discussed thoroughly? I searched but found nothing! Thanks
  6. K

    Capacitor Charge/Discharge boundary conditions for time

    Homework Statement Homework Equations 3. The Attempt at a Solution [/B] I know dV=1/C∫idt and that we integrate the voltage from V to V0. What I don't get are the boundary conditions for t - How do we get what we get in the parenthesis? My closest assumption is that the t/T values refer to the...
  7. davidbenari

    I Numerical integration of PDEs: How do you satisfy boundary conditions

    Suppose we are solving a diffusion equation. ##\frac{\partial}{\partial t} T = k\frac{\partial^2}{\partial x^2} T## On the domain ##0 < x < L## Subject to the conditions ##T(x,0) = f(x) ## and ##T = 0 ## at the end points. My question is: Suppose we solve this with some integration scheme...
  8. P

    Application of boundary conditions in determining the Green's function

    Homework Statement Find the Green's function $G(t,\tau)$ that satisfies $$\frac{\text{d}^2G(t,\tau)}{\text{d}t^2}+\alpha\frac{\text{d}G(t,\tau)}{\text{d}t}=\delta(t-\tau)$$ under the boundary conditions $$G(0,\tau)=0~~~\text{ and }~~~\frac{\text{d}G(t,\tau)}{\text{d}t}=0\big|_{t=0}$$ Then...
  9. Dor

    Solve Laplace equation on rectangle domain

    Homework Statement I'm having issues with a Laplace problem. actually, I have two different boundary problems which I don't know how to solve analytically. I couldn't find anything on this situations and if anybody could point me in the right direction it would be fantastic. It's just Laplace's...
  10. astrodeva

    Solving Laplace Equations using this boundary conditions?

    The equation is Uxx + Uyy = 0 And domain of solution is 0 < x < a, 0 < y < b Boundary conditions: Ux(0,y) = Ux(a,y) = 0 U(x,0) = 1 U(x,b) = 2 What I've done is that I did separation of variables: U(x,y)=X(x)Y(y) Plugging into the equation gives: X''Y + XY'' = 0 Rearranging: X''/X = -Y''/Y = k...
  11. S

    Question about a boundary-value problem (electrostatics)

    Laplacian for polars: $$\frac{1}{r}\frac{\partial}{\partial r}\left( r\frac{\partial \phi}{\partial r}\right) + \frac{1}{r^{2}}\frac{\partial^{2} \phi}{\partial \theta^{2}} = 0$$ This is in relation to a problem relating to a potential determined by the presence of a wedge shaped metallic...
  12. A

    Boundary conditions electrostatic potential

    I'm modelling a system with a nanosized semiconductor in 1d, inside which I want to find the electrostatic potential. Having found this I am unsure what boundary conditions to put on this, when it is connected to a metal on one side and to vacuum on the other. So far I have put that it is...
  13. MexChemE

    Some questions on heat transfer

    Hello, forum! I'm just starting a new course on heat transfer and we're using Incropera's book. Last time I studied heat transfer was in my transport phenomena course, using BSL, so it was kind of a culture shock using the new book, because the methods used are kind of different in some cases...
  14. A

    Solving boundary conditions for vibrating beam

    Hi there, I'm solving the equation for the transverse vibrations of a Euler-Bernoulli beam fixed at both ends and subject to axial loading. It's a similar problem to that described by Rao on page 355 of his book "Vibration of Continuous Systems" (Google books link), except the example he uses...
  15. Xezlec

    Electromagnetic gauge invariance with boundary conditions

    Hello. I'm trying to wrap my head around how Lagrangians work in classical field theory. I have a book that is talking about the gauge invariance of the Lagrangian: \mathscr{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}-J^\mu A_\mu. It shows that we can replace A^\mu with A^\mu+\partial^\mu\chi for...
  16. M

    Calculus of variations with circular boundary conditions

    The Euler-Lagrange equations give a necessary condition for the action be extremal given some lagrangian which depends on some function to be varied over. The basic form assumes fixed endpoints for the function to be varied over, but we can extend to cases in which one or both endpoints are free...
  17. S

    Boundary conditions shooting method

    I am trying to solve the differential equation ##\frac{d^{2}y}{dr^2}+(\frac{1}{r}+1)y=0## with the boundary conditions ##y(r) \rightarrow r \frac{dy}{dr}(0)## as ##r \rightarrow 0## and ##y(r) \rightarrow \sin(kr+\delta)## as ##r \rightarrow \infty##. I know that the shooting method is the...
  18. G

    Solving Boundary Conditions in 2D Axisymmetrical Model

    Hi! I can't understand how to implement boundary conditions in a 2D axisymmetrical model. How should be the value of pressure, x-velocity and y-velocity at the axis of symmetry? Thank you!
  19. MexChemE

    Burning carbon particle -- Boundary conditions

    I want to model the diffusion-controlled combustion of a small carbon particle. The system I want to model is similar to this one However, I'm not going to use the stagnant gas film model as shown in the figure, since I lack data for the film thickness, and I want to evaluate the problem...
  20. B

    Understanding Beam Boundary Conditions for a Rotating Shaft

    Hello, Can anyone help me find the boundary conditions of the below given beam please. Its a clamped-free beam but the overhanging sectiona and the mass makes it confusing. Actually I am puzzled about finding the initial conditions.
  21. MexChemE

    How do I model mass transfer in a tubular reactor?

    Good evening, PF! I am supposed to model the following system. I will be using the same notation as in BSL. Fluid A enters the reaction zone at z = 0 at a concentration CA0. A reacts to form B in the first order reaction A → B at a rate of R_A = k_1''' C_A. We assume the whole mixture to be...
  22. MexChemE

    Heat and mass transfer -- Boundary conditions & balance terms

    Hello, PF! Recently, while reading chapter 10 (microscopic energy balances) of the second edition of BSL, I found a minor discrepancy which is confusing me, especially when considering the mathematical analogies of heat and mass transfer. In section 10.1, the authors introduce Newton's law of...
  23. gracy

    How boundary conditions help in finding integration constant

    How to find value of integration constant?I know with the help of boundary conditions,but How boundary conditions help in finding integration constant?
  24. hideelo

    Q about Poisson eqn w/ Neumann boundary conditions as in Jackson

    I am reading Jackson Electrodynamics (section 1.10 in 3rd edition) and he is discussing the Poisson eqn $$\nabla^2 \Phi = -\rho / \epsilon_0$$ defined on some finite volume V, the solution using Greens theorem is $$\Phi (x) = \frac{1}{4 \pi \epsilon_0} \int_V G(x,x') \rho(x')d^3x' +\frac{1}{4...
  25. S

    Boundary conditions for 3d current flow through water

    I've forgotten a lot of field theory so I've been rereading it in a couple of electric field theory textbooks. What seems like a simple problem falls between the cracks. I hope some readers can help - it will be appreciated. My application seems simple (solution will require numerical FEA but...
  26. B

    Boundary conditions on a fixed-fixed bar

    I am working with a fixed fixed bar with a distributed axial load to the right as w(x)=CX/L. I am having a hard time determining the force boundary conditions. I know that U(0)=0 and U(L)=0. However, I need to come up with something in regards to U'(Value). Any help would be appreciated.
  27. Shahrokh

    Coupled differential equation with boundary conditions

    Hi, I have two coupled differential equations d^2 phi(z)/dz^2=lambda*phi(z)*(phi(z)^2+psi(z)^2-sigma^2) d^2 psi(z)/dz^2=lambda*psi(z)*(phi(z)^2+psi(z)^2-sigma^2+epsilon/lambda) where lambda, epsilon and sigma are arbitrary constants. The equation subject to the bellow boundary conditions...
  28. K

    Sound standing waves paradox....

    If you seal a loudspeaker at the end of a tube and close the other end of the tube you will get standing waves; but what are the boundary conditions at the speaker for the sound pressure wave? Pressure =0 or Pressure = MAX? I find no mention of this in the literature. To find out I performed a...
  29. Sobak

    Boundary conditions for heat transfer in the pipe

    Consider the heat equation dT/dt - aΔT + v⋅∇T = S where S is a source term dependent of the radiation intensity I and the temperature T. The fluid velocity v is prescribed. We also consider the radiative transfer equation describing the radiative intensity I(x,ω,t) where ω is the ray direction...
  30. U

    Heat equation given constant surface heat flux

    How would I go about finding temperature distribution in a thin square plate during the the first few milliseconds (or actually a fraction of a millisecond) after t=0s. Initial temperature distribution throughout the plate is known, there is heat flux to one side = Qinj, while heat flux from all...
  31. N

    FEM: periodic boundary conditions (1D)

    I am trying to set up the mass matrix for a 1D system which I want to solve using finite elements. So the mass matrix is defined as M = \int{NN^T}dL, where N is the finite element linear basis functions. I use hat functions. Say I have 10 elements, corresponding to 11 nodes running from -5...
  32. W

    Periodic Boundary Conditions proof

    Hi! When we model bloch-waves in a solid we assume that there exist some kind of periodic boundary conditions such that the wave function is periodic. In 1D, ##\psi(x)## repeats itself for every ##L##, ##\psi(x) = \psi(x+L)##, such as here: OK, fine, we get pretty wave solutions if we assume...
  33. Ahmad Kishki

    A twist on Maxwell's equations boundary conditions

    we have that Ht1 (x,y,z) - Ht2 (x,y,z) = Js and for the special case Ht1 (x,y,z) - Ht2 (x,y,z) = 0 where there is no surface current. At a boundary with Js =0, which for simplicity let's asume is at at x = a, then knowing that Ht1 and Ht2 are the magnetic fields to the left and right of the...
  34. S

    Boundary conditions of the radial Schrodinger equation

    Consider the radial differential equation ##\bigg( - \frac{d^2}{dr^2} + \frac{(l+\frac{d-3}{2})(l+\frac{d-1}{2})}{r^2} + V(r) + m^2 \bigg) \phi_l (r) = \lambda\ \phi_l (r)##, which I've obtained by solving the Schrodinger equation in ##d## dimensions using the method of separation of...
  35. S

    Solving an eigenvalue equation with boundary conditions

    Suppose that we want to solve the eigenvalue equation with Dirichlet boundary conditions ## \bigg(-\frac{d^2}{dx^2}+V(x)\bigg) \phi_n = \lambda_n \phi_n,\ \ \ \ \ \ \ \ \ \ \ \ \ \phi_n(0)=0,\ \phi_n(1)=0, ## where ##0 < \lambda_1 < \lambda_2 < ...## are discrete, non-degenerate eigenvalues...
  36. K

    Definition of open boundary conditions

    I have a question I'm a little embarrassed to be asking: what is meant in condensed matter when someone describes a system with "open boundary conditions," say in one-dimension for simplicity? I am comfortable with the statement of fixed (Dirichlet) or free (von Neumann) boundary conditions, as...
  37. K

    Solving PDEPE without boundary conditions? heat transfer

    Hi all! I am trying to solve a system of partial differential equations in Matlab, with both derivatives in time and space domains. I am using the pdepe function for that. The system is, to be simple, a sort of solar thermal panel, made of three layers: an absorber plate, a fluid layer of...
  38. B

    ANSYS: What are vibrating feeder's boundary conditions?

    I have created such vibrating feeder model on SW but on ANSYS I'm only analyzing the frame. 1)How do I set up boundary conditions, I think I need elastic supports? 2)In modal analysis I have elastic, fixed supports, remote displacement - which should I use and in what directions? 3)Do I perform...
  39. PhysicsKid0123

    Boundary conditions of electric field?

    I'm reading griffiths electrodynamics and I am confused about a concept. Mainly because I might be interpreting it in different ways. Why does the equation contain an E with a negative in front? Namely, E_below. Isn't the Electric field pointing away from the surface with the surface charge...
  40. George Zucas

    Complex System Boundary Conditions

    Edit: Sorry about the vague title, it was intended to be complex beam system boundary conditions but somehow it turned out like this. Hello, I am trying to learn complex beam system designs and I sometimes struggle to assign boundary conditions. For example I am trying to design the lifting...
  41. Ahmad Kishki

    Disappearing terms in electrodynamics boundary conditions

    In the derivation of the boundary conditions we apply the integral form of maxwell's equations, but once we take a very small volume we find that some terms disappear like the displacement current as well as the time derivative of the magnetic field. Why do these terms disappear? For reference...
  42. N

    Griffith's E&M: Why is V_0(y) Missing from Equation 3.28?

    Does anyone here have a copy of Griffith's E&M? On page 128, condition III V=V_0 (y) when x = 0. Do you know why then value V_0(y) does not appear in in equation 3.28, V(x,y) = Ce^(-ky)sin(ky)? The author does not explain this.
  43. AL-Hassan Naser

    Free electron or empty lattice schrodinger equation solution

    in the solution for free electron we start with X(x) = A exp (ikx) + B exp (-ikx) then using boundary conditions we eliminate B if the wave is traveling in the positive direction and vice versa my questions are: 1. what is the boundary condition used? 2. is it X(-inf) = 0? because this would...
  44. A

    Electromagnetic boundary conditions for symmetric model

    I stumbled upon this article: http://www.comsol.com/blogs/exploiting-symmetry-simplify-magnetic-field-modeling/ Since the article does not contain any mathematical formulations, I was wondering how the boundary conditions can be expressed in terms of magnetic vector potential. From what I...
  45. S

    Standing Waves Under Boundary Conditions

    Homework Statement See the figure below. A thin pipe, open at both ends, with length 0.400 m and 1.0 cm diameter is placed vertically in a cylindrical bucket so that it nearly touches the flat bottom of the bucket, which has an area of 0.100 m2 . The air temperature is 22o C. Water is slowly...
  46. L

    Signature, boundary conditions and topology

    It is said that the metric tensor in GR is generally covariant and obey diffeomorphism invariance.. but the signature, boundary conditions and topology are not. What would be GR like if these 3 obey GC and DI too? Is it possible?
  47. Coffee_

    Classical field theory, initial and boundary conditions

    Hello, I am taking an introductory class on non relativistic classical field theory and right now we are doing the more mathematical aspect of things right now. The types of differential equations in the function ##f(\vec{r},t)## that are considered in this course are linear in the following...
  48. A

    Boundary conditions - unique solution

    I recently solved a differential equation with the solution: f(x) = Aexp(ikx) + Bexp(-ikx) with the periodic boundary condition f(x+L)=f(x). This condition leads to: Aexp(ikx)exp(ikL) + Bexp(-ikx)exp(-ikL) = Aexp(ikx) + Bexp(-ikx) (1) Now the way I figured out the constants A and B was that...
  49. S

    Boundary Conditions for Hydrogen Schrodinger Equation

    If I am trying to derive the energy eigenvalues and quantum numbers for the hydrogen atom (basic hydrogen-1), I obviously need to solve the hydrogen Schrodinger equation and account for some boundary conditions. However, no website ever gives me the boundary conditions. What would be the...
  50. 5

    Dealing with boundary conditions in system of ODEs

    Homework Statement I'm trying to plot the steady state concentration of yA vs. x, yB vs x and yu vs x using centered finite difference method. Homework Equations The Attempt at a Solution τ represents the dimensionless time variable, so steady state would mean that the left hand side of...
Back
Top