Tensor analysis Definition and 76 Threads
-
I Transformation of second rank tensor
In all the sources I checked, except for one by Dwight E. Neuenschwander, Tensor Calculus for Physics: A Concise Guide, they only provide the definition of a tensor (or describe how it transforms). However, Neuenschwander attempts to motivate the definition of a second-rank tensor. First, he...- LightPhoton
- Thread
- Coordinate transformations Tensor analysis Tensors
- Replies: 4
- Forum: Differential Geometry
-
I Tensor field from a covariant derivative operator (affine connection)
Consider the expression $$T(\omega, X, Y) := \omega \nabla_X Y$$ where ##\omega,X,Y## are a covector field and two vector fields respectively. Is ##T## a (1,2) tensor field ? From my understanding the answer is negative. The point is that ##T(\,. , \, . , \, .)## is not ##C^{\infty}##-linear...- cianfa72
- Thread
- Calculus on manifolds Connection Covariant derivative Tensor analysis Tensor calculus
- Replies: 28
- Forum: Special and General Relativity
-
A Proving that Levi-Civita tensor density is invariant
This is a problem from the textbook Supergravity ( by Daniel Z. Freedman and Antoine Van Proeyen ). I am trying to learn general relativity from this book. I am attempting to do the later part of the Exercise 7.14 ( on page 148 ). Basically it asks us to explicitly show that the Levi-Civita...- baba26
- Thread
- Homework and exercise Levi-civita Tensor analysis Tetrad
- Replies: 3
- Forum: Special and General Relativity
-
M
Need resources for self study of tensor analysis and other Physics topics
Hello. I'm currently trying to learn tensor analysis using MATHEMATICAL METHODS FOR PHYSICISTS(By Arfken) but I cannot understand this book well. Is there any other book (same level as Arfken) to learn about tensor analysis as a beginner? Is there anyway that I find out wchich books are...- MatinSAR
- Thread
- Resources Self study Tensor analysis
- Replies: 11
- Forum: STEM Academic Advising
-
I Calculation of Lie derivative - follow up
Hi, a doubt related to the calculation done in this old thread. $$\left(L_{\mathbf{X}} \dfrac{\partial}{\partial x^i} \right)^j = -\dfrac{\partial X^j}{\partial x^i}$$ $$L_{\mathbf{X}} {T^a}_b = {(L_{\mathbf{X}} \mathbf{T})^a}_b + {T^{i}}_b \langle L_{\mathbf{X}} \mathbf{e}^a, \mathbf{e}_i...- cianfa72
- Thread
- Covariant derivative Lie bracket Lie derivative Tensor analysis Vector field
- Replies: 27
- Forum: Special and General Relativity
-
A
Relativity Looking for a good introductory Tensor Analysis Textbook
Hello all, I've taken math through differential equations and linear algebra, am in my senior year of physics curricula while conducting McNair research regarding General Relativity. I found a NASA document outlining Einstein's field equations, which suggests only preparative familiarity with...- astroboulders
- Thread
- Mathematics Tensor analysis
- Replies: 8
- Forum: Science and Math Textbooks
-
SH2372 General Relativity (8): Tensor operations
- Orodruin
- Media item
- Tensor algebra Tensor analysis
- Comments: 0
- Category: Relativity
-
SH2372 General Relativity (7): Tensor components and coordinate transformations
- Orodruin
- Media item
- Coordinate transformations Tensor analysis
- Comments: 0
- Category: Relativity
-
Unit Basis Components of a Vector in Tensorial Expressions?
Divergence formula $$\vec{\nabla} \cdot \vec{A}= \frac{1}{\sqrt{G}} \frac{\partial}{\partial q^{j}} (A^{j} \sqrt{G})$$ If we express it in terms of the components of ##\vec{A}## in unit basis using $$A^{*j} = \sqrt{g^{jj}} A^{j}$$ , we get $$\vec{\nabla} \cdot \vec{A}= \frac{1}{\sqrt{G}}...- yucheng
- Thread
- Basis Components Expressions Tensor analysis Unit Vector
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
I Excellent 3D Graphics thing at math3d.org
May I recommend math3d.org as a website for making 3D-Graphics for fresh_42's page on List of Online Calculators for Math, Physics, Earth and Other Curiosities. I also might recommend cloudconvert.com to make .gifs. It is simpler than ezgif.com, mainly because it is not so feature rich. Here...- George Keeling
- Thread
- 3d Graphics Tensor analysis
- Replies: 7
- Forum: General Math
-
I Differential k-form vs (0,k) tensor field
Hi, I would like to ask for a clarification about the difference between a differential k-form and a generic (0,k) tensor field. Take for instance a (non simple) differential 2-form defined on a 2D differential manifold with coordinates ##\{x^{\mu}\}##. It can be assigned as linear combination...- cianfa72
- Thread
- Calculus on manifolds Differential Field Form Tensor Tensor analysis
- Replies: 7
- Forum: Differential Geometry
-
S
I Proving ##\partial^{i} = g^{ik} \partial_{k}##
Let ##\varphi## be some scalar field. In "The Classical Theory of Fields" by Landau it is claimed that $$ \frac{\partial\varphi}{\partial x_i} = g^{ik} \frac{\partial \varphi}{\partial x^k} $$ I wanted to prove this identity. Using the chain rule $$ \frac{\partial}{\partial x_{i}}=\frac{\partial...- SplinterCell
- Thread
- tensor tensor algebra tensor analysis
- Replies: 8
- Forum: Linear and Abstract Algebra
-
L
I Physical parameters for spin 1/2 particles
I am having trouble to understand what it means by "physically relevant real parameters" and how does it help us to specify a quantum system. Let say, we have a state of k half spin electrons? My guess is about the local phase of the spin, and this would make it 2^k parameters since each...- lazayama
- Thread
- Degree of freedom Parameters Particle physics Particles Physical Quantu physics Spin Spin 1/2 Tensor analysis
- Replies: 5
- Forum: Quantum Physics
-
T
I Can Tensors of Any Rank Be Approximated by Matrices?
Hello. Could we approximate a tensor of (p,q) rank with matrices of their elements? I am talking also about the general case of a tensor not only special cases. For example a (2,0) tensor with i, j indices is a matrix of ixj indices. A (3,0) tensor with i,j,k indices I think is k matrices with...- trees and plants
- Thread
- Analysis Tensor Tensor analysis
- Replies: 26
- Forum: Topology and Analysis
-
F
Find the tensor that carries out a transformation
I got stuck in this calculation, I can't collect everything in terms of ##dx^{\mu}##. ##x'^{\mu}=\frac{x^{\mu}-x^2a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2x^2}## ##x'^{\mu}=\frac{x^{\mu}-g_{\alpha \beta}x^{\alpha}x^{\beta}a^{\mu}}{1-2a_{\nu}x^{\nu}+a^2g_{\alpha \beta}x^{\alpha}x^{\beta}}##...- Frostman
- Thread
- Tensor Tensor algebra Tensor analysis Transformation
- Replies: 5
- Forum: Advanced Physics Homework Help
-
K
Show that a (1,2)-tensor is a linear function
I know that a tensor can be seen as a linear function. I know that the tensor product of three spaces can be seen as a multilinear map satisfying distributivity by addition and associativity in multiplication by a scalar.- KungFu
- Thread
- Function Linear Tensor Tensor analysis Tensor product
- Replies: 6
- Forum: Calculus and Beyond Homework Help
-
How do I derive this vector calculus identity?
##(\nabla\times\vec B) \times \vec B=\nabla \cdot (\vec B\vec B -\frac 1 2B^2\mathcal I)-(\nabla \cdot \vec B)\vec B## ##\mathcal I## is the unit tensor- Bright Liu
- Thread
- Calculus Derive Identity Tensor analysis Vector Vector calculus
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
Classical Books about tensor analysis just good enough for physics
Hi. I am looking for a book about tensor analysis. I am aware that there have been some post about those books, but I wish to find a thin book rather than a tome but just good enough for physics, such as group theory, relativistic quantum mechanics, and quantum field theory. I am reading...- Haorong Wu
- Thread
- Analysis Books Physics Tensor Tensor analysis
- Replies: 5
- Forum: Science and Math Textbooks
-
Q
I Metric Tensor: Symmetry & Other Constraints
Aside from being symmetric, are there any other mathematical constraints on the metric?- quickAndLucky
- Thread
- Constraints Metric Metric tensor Tensor Tensor analysis
- Replies: 10
- Forum: Special and General Relativity
-
S
Infinitesimal coordinate transformation of the metric
I kinda know how to do this problem, it is just that I hit a sign problem. If I take the partial derivative of the coordinate transformation with respect to ##x'^\mu##, I get writing it first in the inverse form, ##x^\alpha = x'^\alpha - \epsilon^\alpha## ##\frac{\partial x^\alpha}{\partial...- shinobi20
- Thread
- Coordinate Coordinate transformation Infinitesimal Metric Special relativity Tensor analysis Transformation
- Replies: 1
- Forum: Advanced Physics Homework Help
-
S
Antisymmetry of the electromagnetic field tensor
I am trying to answer exercise 5 but I am not sure I understand what the hint is implying, differentiate with respect to ##p_\alpha## and ##p_\beta##, I have done this but nothing is clicking. Also, what is the relevance of the hint "the constraint ##p^\alpha p_\alpha = m^2c^2## can be ignored...- shinobi20
- Thread
- Electromagetism Electromagnetic Electromagnetic field Field Field tensor Special relativity Tensor Tensor analysis
- Replies: 7
- Forum: Advanced Physics Homework Help
-
S
Contracting one index of a metric with the inverse metric
Since ##\nu## is contracted, we form the scalar product of the metric and inverse metric, ##g_{\mu\nu}g^{\nu\lambda} = (\vec{e_\mu} \cdot \vec{e_\nu}) \cdot (\vec{e^\nu} \cdot \vec{e^\lambda}) = \vec{e_\mu} \cdot (\vec{e_\nu} \cdot \vec{e^\nu}) \cdot \vec{e^\lambda} = \delta^\lambda_\mu## I...- shinobi20
- Thread
- Index Inverse Metric Special relativity Tensor analysis
- Replies: 2
- Forum: Advanced Physics Homework Help
-
A
I Contravariant Vector Transformation in Spherical Polar Coordinates
In a spherical polar coordinate system if the components of a vector given be (r,θ,φ)=1,2,3 respectively. Then the component of the vector along the x-direction of a cartesian coordinate system is $$rsinθcosφ$$. But from the transformation of contravariant vector...- Apashanka
- Thread
- Contravariant Tensor analysis Transformation Vector
- Replies: 13
- Forum: Special and General Relativity
-
A Finding the unit Normal to a surface using the metric tensor.
Let $$\phi(x^1,x^2...,x^n) =c$$ be a surface. What is unit Normal to the surface? I know how to find equation of normal to a surface. It is given by: $$\hat{e_{n}}=\frac{\nabla\phi}{|\nabla\phi|}$$However the answer is given using metric tensor which I am not able to derive. Here is the answer...- Abhishek11235
- Thread
- Coordinate Curve Differential geometry Metric tensor Normal Tensor analysis Tensor calculus
- Replies: 3
- Forum: Differential Geometry
-
Velocity is a vector in Newtonian mechanics
I studied the vector analysis in Arfken and Weber's textbook : Mathematical Methods for Physicists 5th edition. In this book they give the definition of vectors in N dimensions as the following: The set of ##N## quantities ##V_{j}## is said to be the components of an N-dimensional vector ##V##... -
Finding the inverse metric tensor from a given line element
Defining dS2 as gijdxidxj and given dS2 = (dx1)2 + (dx2)2 + 4(dx1)(dx2). Find gijNow here is my take on the solution: Since the cross terms are present in the line element equation, we can say that it's a non-orthogonal system. So what I did was express the metric tensor in form of a 2x2...- Sayak Das
- Thread
- Element Inverse Line Line element Metric Metric tensor Tensor Tensor analysis
- Replies: 2
- Forum: Advanced Physics Homework Help
-
P
Dust in special relativity - conservation of particle number
Homework Statement My textbook states: Since the number of particles of dust is conserved we also have the conservation equation $$\nabla_\mu (\rho u^\mu)=0$$ Where ##\rho=nm=N/(\mathrm{d}x \cdot \mathrm{d}y \cdot \mathrm{d}z) m## is the mass per infinitesimal volume and ## (u^\mu) ## is...- Pentaquark5
- Thread
- Christoffel symbols Conservation Dust Four vectors Particle Relativity Special relativity Tensor analysis
- Replies: 4
- Forum: Advanced Physics Homework Help
-
I Transformation of covariant vector components
Riley Hobson and Bence define covariant and contravariant bases in the following fashion for a position vector $$\textbf{r}(u_1, u_2, u_3)$$: $$\textbf{e}_i = \frac{\partial \textbf{r}}{\partial u^{i}} $$ And $$ \textbf{e}^i = \nabla u^{i} $$ In the primed...- saadhusayn
- Thread
- Components Covariant Covariant vectors Tensor analysis Transformation Vector Vector components
- Replies: 1
- Forum: Differential Geometry
-
W
Calculus Vector Analysis and Cartesian Tensors by Bourne and Kendall
I have to do a teaching assistant job on a multivariable calculus class, I have to survey books that can be useful as resources. Has anyone used this book by Bourne and Kendall? I noticed that the treatment of vector analysis seems good and the chapter on Cartesian tensors seem to be a good...- Whitehole
- Thread
- Analysis Cartesian Tensor analysis Tensors Vector Vector analysis
- Replies: 1
- Forum: Science and Math Textbooks
-
I Is the Contraction of a Mixed Tensor Always Symmetric?
Is that true in general and why: $$A^{mn}_{.~.~lm}=A^{nm}_{.~.~ml}$$- arpon
- Thread
- Contraction Mixed Tensor Tensor analysis
- Replies: 4
- Forum: Special and General Relativity
-
M
Vector Calculus - Tensor Identity Problem
Homework Statement Homework Equations The Attempt at a Solution I am really lost here because our professor gave us no example problems leading up to the final exam and now we are expected to understand everything about vector calculus. This is my attempt at the cross product and...- mille2eo
- Thread
- Calculus Identity Tensor Tensor analysis Tensor calculus Vector Vector calculus
- Replies: 1
- Forum: Calculus and Beyond Homework Help
-
W
Geometry Tensors and Manifolds by Wasserman
I would like to know at what level is the book Tensors and Manifolds by Wasserman is pitched and what are the prerequisites of this book? Given the prerequisites, at what level should it be (please give examples of books)? If anyone has used this book can you please kindly give your comments and...- Whitehole
- Thread
- Manifolds Tensor analysis Tensors
- Replies: 1
- Forum: Science and Math Textbooks
-
I Lorentz Transformations in the context of tensor analysis
Hello everyone, There is something that has been bugging me for a long time about the meaning of Lorentz Transformations when looked at in the context of tensor analysis. I will try to be as clear as possible while at the same time remaining faithful to the train of thought that brought me...- Diego Berdeja
- Thread
- Analysis General relativity Lorentz Lorentz transformations Maxwell equations Special relativity Tensor Tensor analysis Transformations
- Replies: 10
- Forum: Special and General Relativity
-
B Tensor Calculus vs Tensor Analysis?
I've seen the terms tensor calculus and tensor analysis both being used - what is the difference?- ibkev
- Thread
- Analysis Calculus Tensor Tensor analysis Tensor calculus
- Replies: 2
- Forum: Linear and Abstract Algebra
-
Differential Geometry book with tensor calculus
Hi, there is a book of dg of surfaces that is also about tensor calculus ? Currently i study with Do Carmo, but i am looking for a text that there is also the tensor calculus! Thank you in advance- Jianphys17
- Thread
- Book Calculus Differential Differential geometry Geometry Tensor Tensor analysis Tensor calculus
- Replies: 4
- Forum: Science and Math Textbooks
-
I How Do You Correctly Apply Indices in Tensor Calculus for Curvature?
Here's what I'm watching: At about 1:35:00 he leaves it to us to look at a parallel transport issue. Explicitly to caclculate ##D_s D_r T_m - D_r D_s T_m## And on the last term I'm having some difficulties, the second christoffel symbol. So we have ##D_s [ \partial_r T_m - \Gamma_{rm}^t T_t]##...- BiGyElLoWhAt
- Thread
- christoffel symbols curvature tensor analysis
- Replies: 3
- Forum: Special and General Relativity
-
W
Riemann tensor given the space/metric
Homework Statement Given two spaces described by ##ds^2 = (1+u^2)du^2 + (1+4v^2)dv^2 + 2(2v-u)dudv## ##ds^2 = (1+u^2)du^2 + (1+2v^2)dv^2 + 2(2v-u)dudv## Calculate the Riemann tensor Homework Equations Given the metric and expanding it ##~~~g_{τμ} = η_{τμ} + B_{τμ,λσ}x^λx^σ + ...## We have...- Whitehole
- Thread
- General relativity Riemann Riemann tensor Tensor Tensor analysis
- Replies: 7
- Forum: Advanced Physics Homework Help
-
W
Covariant derivative of vector fields on the sphere
Homework Statement Given two vector fields ##W_ρ## and ##U^ρ## on the sphere (with ρ = θ, φ), calculate ##D_v W_ρ## and ##D_v U^ρ##. As a small check, show that ##(D_v W_ρ)U^ρ + W_ρ(D_v U^ρ) = ∂_v(W_ρU^ρ)## Homework Equations ##D_vW_ρ = ∂_vW_ρ - \Gamma_{vρ}^σ W_σ## ##D_vU^ρ = ∂_vU^ρ +...- Whitehole
- Thread
- Covariant Covariant derivative Derivative Fields General relativity Sphere Tensor analysis Vector Vector fields
- Replies: 4
- Forum: Advanced Physics Homework Help
-
W
Find the coordinate transformation given the metric
Homework Statement Given the line element ##ds^2## in some space, find the transformation relating the coordinates ##x,y ## and ##\bar x, \bar y##. Homework Equations ##ds^2 = (1 - \frac{y^2}{3}) dx^2 + (1 - \frac{x^2}{3}) dy^2 + \frac{2}{3}xy dxdy## ##ds^2 = (1 + (a\bar x + c\bar y)^2) d\bar...- Whitehole
- Thread
- Coordinate Coordinate transformation General relativity Metric Tensor analysis Transformation
- Replies: 4
- Forum: Advanced Physics Homework Help
-
W
Metric for the construction of Mercator map
Homework Statement The familiar Mercator map of the world is obtained by transforming spherical coordinates θ , ϕ to coordinates x , y given by ##x = \frac{W}{2π} φ, y = -\frac{W}{2π} log (tan (\frac{Θ}{2}))## Show that ##ds^2 = Ω^2(x,y) (dx^2 + dy^2)## and find ##Ω## Homework Equations...- Whitehole
- Thread
- Construction General relativity Map Metric Tensor analysis
- Replies: 2
- Forum: Advanced Physics Homework Help
-
W
Prove the transformation is scalar
Homework Statement 1.) Prove that the infinitesimal volume element d3x is a scalar 2.) Let Aijk be a totally antisymmetric tensor. Prove that it transforms as a scalar. Homework EquationsThe Attempt at a Solution [/B] 1.) Rkh = ∂x'h/∂xk By coordinate transformation, x'h = Rkh xk dx'h =...- Whitehole
- Thread
- Scalar Tensor analysis Transformation
- Replies: 12
- Forum: Calculus and Beyond Homework Help
-
W
Construction of an affine tensor of rank 4
Homework Statement In En the quantities Bij are the components of an affine tensor of rank 2. Construct two affine tensors each of rank 4, with components Cijkl and Dijkl for which ∑k ∑l Cijkl Bkl = Bij + Bji ∑k ∑l Dijkl Bkl = Bij - Bji are identities. Homework Equations The Attempt at a...- Whitehole
- Thread
- Construction rank Tensor Tensor analysis
- Replies: 8
- Forum: Calculus and Beyond Homework Help
-
R
Proving Spin Coefficient Transformation for Null Rotation with l Fixed
In Newmann-Penrose formalism, a Null rotation with ##l## fixed is $$l^a−>l^a\\ n^a−>n^a+\bar{c}m^a+c\bar{m}^a+c\bar{c}l^a\\ m^a−>m^a+cl^a\\ \bar{m}^a−>\bar{m}^a+\bar{c}l^a$$ Using this transformation, how to prove? $$π−>π+2\bar{c}ϵ+\bar{c}^2κ+D\bar{c}$$ Ref: 2-Spinors by P.O'Donell, p.no, 65- Ravi Panchal
- Thread
- Coefficient General relativity Rotation Spin Spinors Tensor analysis Transformation
- Replies: 1
- Forum: Special and General Relativity
-
K
Transformation rule for product of 3rd, 2nd order tensors
1. Problem statement: Assume that u is a vector and A is a 2nd-order tensor. Derive a transformation rule for a 3rd order tensor Zijk such that the relation ui = ZijkAjk remains valid after a coordinate rotation.Homework Equations : [/B] Transformation rule for 3rd order tensors: Z'ijk =...- krabbie
- Thread
- 2nd order Product Tensor Tensor algebra Tensor analysis Tensors Transformation
- Replies: 2
- Forum: Advanced Physics Homework Help
-
&
Deriving Riemann Tensor Comp. in General Frame
How does one derive the general form of the Riemann tensor components when it is defined with respect to the Levi-Civita connection? I assumed it was just a "plug-in and play" situation, however I end up with extra terms that don't agree with the form I've looked up in a book. In a general...- "Don't panic!"
- Thread
- Component Component form Curvature deriving Form Frame General General relativity Riemann Riemann tensor Riemannian geometry Tensor Tensor analysis
- Replies: 9
- Forum: Special and General Relativity
-
L
Classical I need a fluid mechanics textbook
Hello, everyone, please forgive me for my poor English. I'm a sophomore, major in Astronomy. I've finished Hassani's book(Mathematical Physics). And I've learned Real variable function and functional analysis (I do not know what exact name of this course) I'd like to buy a textbook with...- LiD
- Thread
- Fluid Fluid mechanics Functional analysis Mechanics Tensor analysis Textbook
- Replies: 3
- Forum: Science and Math Textbooks
-
N
Tensor Analysis in vector and matrix algebra notation
Is there anywhere that teaches tensor analysis in both tensor and non tensor notation, because I'm having to pause each time i look at something in tensor notation and phrase it mentally in non tensor notation at which point it becomes staggeringly simpler. Any help apreciated- NotASmurf
- Thread
- Algebra Analysis Matrix Matrix algebra Notation Tensor Tensor analysis Vector
- Replies: 1
- Forum: Other Physics Topics
-
M
Studying Reading Bishop & Goldberg's Tensor Analysis: Prerequisites for Physicists
I am a graduate student in physics. One of my biggest frustrations in my education is that I often find that my mathematical background is lacking for the work I do. Sure I can make calculations adequately, well enough to even do well in my courses, but I don't feel like I really understand...- mjordan2nd
- Thread
- Analysis Books Manifolds Math books Reading Tensor Tensor analysis
- Replies: 2
- Forum: STEM Academic Advising
-
Preliminary knowledge on tensor analysis
I am not sure whether this needs to be transported in another topic (as academic guidance). I have some preliminary knowledge on tensor analysis, which helps me being more confident with indices notation etc... Also I'm accustomed to the definition of tensors, which tells us that a tensor is an...- ChrisVer
- Thread
- Analysis Knowledge Tensor Tensor analysis
- Replies: 5
- Forum: Linear and Abstract Algebra
-
B
Where Can I Find a Comprehensive Tensor Analysis Workbook?
Would anybody have some good recommendations for a workbook on tensor analysis? I'm looking for the kind of book that would ask a ton of basic questions like: "Convert the vector field \vec{A}(x,y,z) \ = \ x^2\hat{i} \ + \ (2xz \ + \ y^3 \ + \ (xz)^4)\hat{j} \ + \ \sin(z)\hat{k} to...- bolbteppa
- Thread
- Analysis Tensor Tensor analysis
- Replies: 2
- Forum: Science and Math Textbooks