The answer is B but I don't understand how. Surely, the string at point P is moving upwards.
This video gave a solution but the part that they have indicated as down is a different part of the string and not P.
Homework Statement
You are exploring a newly discovered planet. The radius of the planet is 7.20 * 107 m. You suspend a lead weight from the lower end of a light string that is 4.00 m long and has mass 0.0280 kg. You measure that it takes 0.0685 s for a transverse pulse to travel from the...
Homework Statement
A transverse wave that is propagated through a wire, is described through this function: y(x,t) = 0.350sin(1.25x + 99.6t) SI
Consider the point of the wire that is found at x= 0:
a) What's the time difference between the two first arrivals of x = 0 at the height y =...
Homework Statement
The left-hand end of a long horizontal stretched cord oscillates transversely in SHM with frequency 270 Hz and amplitude 2.4 cm . The cord is under a tension of 90 N and has a linear density 0.08 kg/m . At t=0, the end of the cord has an upward displacement of 2.1 cm and is...
Hi guys,
I'm finding it hard to conceptualise the difference between a displacement-distance and displacement-time graphs for transverse waves. Could somebody explain the difference please?
Can't see where I'm going wrong here - would greatly appreciate if anyone can point it out!
I've gotten the other parts of the question right, so I know that:
ω = 125.66 rad/s
A = 2.50 * 10-3m
k = 3.49 rad/m
The wave is moving in the +x direction.
The general equation for the position of a...
Homework Statement
This isn't necessarily a problem, but a question I have about a certain step taken in showing that the electric and magnetic fields are transverse.
In Jackson, Griffiths, and my professor's written notes, each claims the following. Considering plane wave solutions of the...
Hello, I am working in Papua New Guinea where there is a great deal of seismic activity. I am interested in using MS Excel for simulation of SHM due to seismic waves. To investigate the how frequency and wavelength of the waves affects buildings. Does anyone have any experience of this type of...
Homework Statement
http://puu.sh/frpk5/eae7bce2e3.png [Broken]
Homework Equations
v = sqrt(T / (m / L));
The Attempt at a Solution
7.86 g / cm^3 = 7860 kg / m^3
T = v^2 * m/L
T = 160 ^ 2 * 7860 which is a huge number
I have no idea where the diametre plays a part.
λ∂Homework Statement
Aguitar string lies along the x-axis when in equilibrium. The end of
the string at x=0 (the bridge of the guitar) is fixed. A sinusoidal
wave with amplitude A=0.750 mm and frequency
f =440 Hz, corresponding to the red curves in Fig. 15.24,
travels along the string in the...
Homework Statement
A hanging cord is attached to a fixed support at the top and is 78.0m long. It is stretched taut by a weight with mass 21.0kg attached at the lower end. The mass of the cord is 2.20kg . A device at the bottom oscillates the cord by tapping it sideways (Do not neglect the...
Homework Statement
Two identical guitar strings are stretched with the same tension between supports that are not the same distance apart. The fundamental frequency of the higher-pitched string is 380Hz, and the speed of transverse waves in both wires is 200 m/s. How much longer is the...